The excitatory/inhibitory input to orexin/hypocretin neuron soma undergoes day/night reorganization

2017 ◽  
Vol 222 (8) ◽  
pp. 3847-3859 ◽  
Author(s):  
Claudia Laperchia ◽  
Roberta Imperatore ◽  
Idris A. Azeez ◽  
Federico Del Gallo ◽  
Giuseppe Bertini ◽  
...  
1997 ◽  
Vol 77 (2) ◽  
pp. 775-781 ◽  
Author(s):  
Thomas A. Christensen ◽  
John G. Hildebrand

Christensen, Thomas A. and John G. Hildebrand. Coincident stimulation with pheromone components improves temporal pattern resolution in central olfactory neurons. J. Neurophysiol. 77: 775–781, 1997. Male moths must detect and resolve temporal discontinuities in the sex pheromonal odor signal emitted by a conspecific female moth to orient to and locate the odor source. We asked how sensory information about two key components of the pheromone influences the ability of certain sexually dimorphic projection (output) neurons in the primary olfactory center of the male moth's brain to encode the frequency and duration of discrete pulses of pheromone blends. Most of the male-specific projection neurons examined gave mixed postsynaptic responses, consisting of an early suppressive phase followed by activation of firing, to stimulation of the ipsilateral antenna with a blend of the two behaviorally essential pheromone components. Of 39 neurons tested, 33 were excited by the principal (most abundant) pheromone component but inhibited by another, less abundant but nevertheless essential component of the blend. We tested the ability of each neuron to encode intermittent pheromonal stimuli by delivering trains of 50-ms pulses of the two-component blend at progressively higher rates from 1 to 10 per second. There was a strong correlation between 1) the amplitude of the early inhibitory postsynaptic potential evoked by the second pheromone component and 2) the maximal rate of odor pulses that neuron could resolve ( r = 0.92). Projection neurons receiving stronger inhibitory input encoded the temporal pattern of the stimulus with higher fidelity. With the principal, excitatory component of the pheromone alone as the stimulus, the dynamic range for encoding stimulus intermittency was reduced in nearly 60% of the neurons tested. The greatest reductions were observed in those neurons that could be shown to receive the strongest inhibitory input from the second behaviorally essential component of the blend. We also tested the ability of these neurons to encode stimulus duration. Again there was a strong correlation between the strength of the inhibitory input to a neuron mediated by the second pheromone component and that neuron's ability to encode stimulus duration. Neurons that were strongly inhibited by the second component could accurately encode pulses of the blend from 50 to 500 ms in duration ( r = 0.94), but that ability was reduced in neurons receiving little or no inhibitory input ( r = 0.23). This study confirms that certain olfactory projection neurons respond optimally to a particular odor blend rather than to the individual components of the blend. The key components activate opposing synaptic inputs that enable this subset of central neurons to copy the duration and frequency of intermittent odor pulses that are a fundamental feature of airborne olfactory stimuli.


2000 ◽  
Vol 83 (2) ◽  
pp. 808-827 ◽  
Author(s):  
P. E. Latham ◽  
B. J. Richmond ◽  
P. G. Nelson ◽  
S. Nirenberg

Many networks in the mammalian nervous system remain active in the absence of stimuli. This activity falls into two main patterns: steady firing at low rates and rhythmic bursting. How are these firing patterns generated? Specifically, how do dynamic interactions between excitatory and inhibitory neurons produce these firing patterns, and how do networks switch from one firing pattern to the other? We investigated these questions theoretically by examining the intrinsic dynamics of large networks of neurons. Using both a semianalytic model based on mean firing rate dynamics and simulations with large neuronal networks, we found that the dynamics, and thus the firing patterns, are controlled largely by one parameter, the fraction of endogenously active cells. When no endogenously active cells are present, networks are either silent or fire at a high rate; as the number of endogenously active cells increases, there is a transition to bursting; and, with a further increase, there is a second transition to steady firing at a low rate. A secondary role is played by network connectivity, which determines whether activity occurs at a constant mean firing rate or oscillates around that mean. These conclusions require only conventional assumptions: excitatory input to a neuron increases its firing rate, inhibitory input decreases it, and neurons exhibit spike-frequency adaptation. These conclusions also lead to two experimentally testable predictions: 1) isolated networks that fire at low rates must contain endogenously active cells and 2) a reduction in the fraction of endogenously active cells in such networks must lead to bursting.


2005 ◽  
Vol 94 (6) ◽  
pp. 3826-3835 ◽  
Author(s):  
Joshua S. Green ◽  
Dan H. Sanes

Despite the peripheral and central immaturities that limit auditory processing in juvenile animals, they are able to lateralize sounds using binaural cues. This study explores a central mechanism that may compensate for these limitations during development. Interaural time and level difference processing by neurons in the superior olivary complex depends on synaptic inhibition from the medial nucleus of the trapezoid body (MNTB), a group of inhibitory neurons that is activated by contralateral sound stimuli. In this study, we examined the maturation of coding properties of MNTB neurons and found that they receive an inhibitory influence from the ipsilateral ear that is modified during the course of postnatal development. Single neuron recordings were obtained from the MNTB in juvenile (postnatal day 15–19) and adult gerbils. Approximately 50% of all recorded MNTB neurons were inhibited by ipsilateral sound stimuli, but juvenile neurons displayed a much greater suppression of firing as compared with those in adults. A comparison of the prepotential and postsynaptic action potential indicated that inhibition occurred at the presynaptic level, likely within the cochlear nucleus. A simple linear model of level difference detection by lateral superior olivary neurons that receive input from MNTB suggested that inhibition of the MNTB may expand the response of LSO neurons to physiologically realistic level differences, particularly in juvenile animals, at a time when these cues are reduced.


1987 ◽  
Vol 57 (4) ◽  
pp. 1130-1147 ◽  
Author(s):  
M. N. Semple ◽  
L. M. Kitzes

The central auditory system could encode information about the location of a high-frequency sound source by comparing the sound pressure levels at the ears. Two potential computations are the interaural intensity difference (IID) and the average binaural intensity (ABI). In this study of the central nucleus of the inferior colliculus (ICC) of the anesthetized gerbil, we demonstrate that responses of 85% of the 97 single units in our sample were jointly influenced by IID and ABI. For a given ABI, discharge rate of most units is a sigmoidal function of IID, and peak rates occur at IIDs favoring the contralateral ear. Most commonly, successive increments of ABI cause successive shifts of the IID functions toward IIDs favoring the ipsilateral ear. Neurons displaying this behavior include many that would conventionally be classified EI (receiving predominantly excitatory input arising from one ear and inhibitory input from the other), many that would be classified EE (receiving predominantly excitatory input arising from each ear), and all that are responsive only to contralateral stimulation. The IID sensitivity of a very few EI neurons is unaffected by ABI, except near threshold. Such units could provide directional information that is independent of source intensity. A few EE neurons are very sensitive to ABI, but are minimally sensitive to IID. Nevertheless, our data indicate that responses of most EE units in ICC are strongly dominated by excitation of contralateral origin. For some units, discharge rate is nonmonotonically related to IID and is maximal when the stimuli at the two ears are of comparable sound pressure. This preference for zero IID is common for all binaural levels. Many EI neurons respond nonmonotonically to ABI. Discharge rates are greater for IIDs representative of contralateral space and are maximal at a single best ABI. For a subset of these neurons, the influence arising from the ipsilateral ear is comprised of a mixture of excitation and inhibition. As a consequence, discharge rates are nonmonotonically related not only to ABI but also to IID. This dual nonmonotonicity creates a clear focus of peak response at a particular ABI/IID combination. Because of their mixed monaural influences, such units would be ascribed to different classes of the conventional (EE/EI) binaural classification scheme depending on the binaural level presented. Several response classes were identified in this study, and each might contribute differently to the encoding of spatial information.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 82 (3) ◽  
pp. 1198-1208 ◽  
Author(s):  
Kaoru Yoshida ◽  
Yoshiki Iwamoto ◽  
Sohei Chimoto ◽  
Hiroshi Shimazu

Omnipause neurons (OPNs) are midline pontine neurons that are thought to control a number of oculomotor behaviors, especially saccades. Intracellular recordings were made from OPNs in alert cats to elucidate saccade-associated postsynaptic events in OPNs and thereby determine what patterns of afferent discharge impinge on OPNs to cause their saccadic inhibition. The membrane potential of impaled OPNs exhibited steep hyperpolarization before each saccade that lasted for the whole period of the saccade. The hyperpolarization was reversed to depolarization by intracellular injection of Cl− ions, indicating it consisted of temporal summation of inhibitory postsynaptic potentials (IPSPs). The duration of the saccade-related hyperpolarization was almost equal to the duration of the concurrent saccades. The time course of the hyperpolarization was similar to that of the radial eye velocity except for the initial phase. During the falling phase of eye velocity, the correlation between the instantaneous amplitude of hyperpolarization and the instantaneous eye velocity was highly significant. The amplitude of hyperpolarization at the eye velocity peak was correlated significantly with the peak eye velocity. The time integral of the hyperpolarization was correlated with the radial amplitude of saccades. The initial phase disparity between the hyperpolarization and eye velocity was due to the relative constancy of peak time (∼20 ms) of the initial steep hyperpolarization regardless of the later potential profile that covaried with the eye velocity. The initial steep hyperpolarization led the beginning of saccades by 15.9 ± 3.8 (SD) ms, which is longer than the lead time for medium-lead burst neurons. These results demonstrate that the pause of activity in OPNs is caused by IPSPs initiated by an abrupt, intense input and maintained, for the whole duration of the saccade, by afferents conveying eye velocity signals. We suggest that the initial sudden inhibition originates from central structures such as the superior colliculus and frontal eye fields and that the eye velocity-related inhibition originates from the burst generator in the brain stem.


1998 ◽  
pp. 215-224
Author(s):  
David Beeman
Keyword(s):  

1983 ◽  
Vol 63 (3) ◽  
pp. 915-1048 ◽  
Author(s):  
M. R. Bennett

Quantal secretion at nerve terminals in mature muscles depends on the number of terminal branches and the size of release sites (sect. VB4). The physical length of SBL determines the length of terminal branch that can be laid down in a reinnervation experiment (sect. IVA4). A limit is set on the total length of terminal branches formed by a motoneuron; this limit is determined by the amount of TF (sect. IVB) made available from the neuron soma to the peripheral branches of the neuron (sect. VC). As a result of this limit, not all SBL needs to be occupied at a site by terminal branches. The SBL eventually disappears if it is not occupied by terminal branches (sect. IVA2). If a muscle is relatively inactive, it synthesizes and releases at synaptic sites additional amounts of NGF, which stimulates the growth of additional terminal branches. These may secrete sufficient amounts of AF to induce the formation of new SRs with associated SBL. In these circumstances a new synaptic site is formed or an extension of an existing site is created. If the size of a motor unit is decreased, the enhanced release of TF at the remaining terminals ensures that each occupies all the SBL at the synaptic site. Furthermore the enhanced release of AF per terminal induces more SBL, allowing additional terminal branches on the muscle cells to be established. Neither of these changes occurs unless the threshold amount of NGF is available from the muscle to stabilize the terminals. If this condition is met, an increase in quantal release per terminal occurs after reducing the size of a motor unit (sect. VC). An increase in quantal release per terminal also occurs after inactivation of a muscle. Such inactivation leads to an enhanced release of NGF per synaptic site (sect. VA4). Extra terminals may then form if sufficient TF is available; these may innervate existing but empty synaptic sites. In rare circumstances the extra terminal may induce SBL and innervate these new sites if sufficient AF is available. In both cases the quantal release per terminal increases. During development the secretory capacity of the axon terminal depends on the muscle cells with which it synapses. This secretory capacity can be enhanced either by increasing the number of terminal branch pairs or by increasing the secretory capacity of individual release sites. If two terminals innervate a synaptic site, their individual secretory capacity is reduced--in these circumstances the terminal's secretory capacity depends on the amount of NGF available to the terminal; two terminals must share their NGF.


2020 ◽  
Author(s):  
Edyta K Bichler ◽  
Francesco Cavarretta ◽  
Dieter Jaeger

AbstractThe activity of basal ganglia input receiving motor thalamus (BGMT) makes a critical impact on motor cortical processing, but modification in BGMT processing with Parkinsonian conditions have not be investigated at the cellular level. Such changes may well be expected due to homeostatic regulation of neural excitability in the presence of altered synaptic drive with dopamine depletion. We addressed this question by comparing BGMT properties in brain slice recordings between control and unilaterally 6-OHDA treated adult mice. At a minimum of 1 month post 6-OHDA treatment, BGMT neurons showed a highly significant increase in intrinsic excitability, which was primarily due to a decrease in M-type potassium current. BGMT neurons after 6-OHDA treatment also showed an increase in T-type calcium rebound spikes following hyperpolarizing current steps. Biophysical computer modeling of a thalamic neuron demonstrated that an increase in rebound spiking can also be accounted for by a decrease in the M-type potassium current. Modeling also showed that an increase in sag with hyperpolarizing steps found after 6-OHDA treatment could in part but not fully be accounted for by the decrease in M-type current. These findings support the hypothesis that homeostatic changes in BGMT neural properties following 6-OHDA treatment likely influence the signal processing taking place in basal ganglia thalamocortical processing in Parkinson’s disease.Significance StatementOur investigation of the excitability properties of neurons in the basal ganglia input receiving motor thalamus (BGMT) is significant because they are likely to be different from properties in other thalamic nuclei due to the additional inhibitory input stream these neurons receive. Further, they are important to understand the role of BGMT in the dynamic dysfunction of cortico – basal ganglia circuits in Parkinson’s disease. We provide clear evidence that after 6-OHDA treatment of mice important homeostatic changes occur in the intrinsic properties of BGMT neurons. Specifically we identify the M-type potassium current as an important thalamic excitability regulator in the parkinsonian state.


2021 ◽  
Author(s):  
Leon A Steiner ◽  
Andrea A Kuehn ◽  
Joerg RP Geiger ◽  
Henrik Alle ◽  
Milos Popovic ◽  
...  

Background: Deep brain stimulation (DBS) provides symptomatic relief in a growing number of neurological indications, but local synaptic dynamics in response to electrical stimulation that may relate to its mechanism of action have not been fully characterized. Objective: The objectives of this study were to (1) study local synaptic dynamics during high frequency extracellular stimulation of the subthalamic nucleus (STN), and (2) compare STN synaptic dynamics with those of the neighboring substantia nigra pars reticulata (SNr). Methods: Two microelectrodes were advanced into the STN and SNr of patients undergoing DBS surgery for PD. Neuronal firing and evoked field potentials (fEPs) were recorded with one microelectrode during stimulation from an adjacent microelectrode. Results: Excitatory and inhibitory fEPs could be discerned within the STN and their amplitudes predicted bidirectional effects on neuronal firing (p = .007). There were no differences between STN and SNr inhibitory fEP dynamics at low stimulation frequencies (p > .999). However, inhibitory neuronal responses were sustained over time in STN during high frequency stimulation, but not SNr (p < .001) where depression of inhibitory input was coupled with a return of neuronal firing (p = .003). Interpretation: Persistent inhibitory input to the STN suggests a local synaptic mechanism for the suppression of subthalamic firing during high frequency stimulation. Moreover, differences in the resiliency versus vulnerability of inhibitory inputs to the STN and SNr suggest a projection source- and frequency-specificity for this mechanism. The feasibility of targeting electrophysiologically-identified neural structures may provide insight into how DBS achieves frequency-specific modulation of neuronal projections.


Sign in / Sign up

Export Citation Format

Share Document