Impact of immunosuppressive and antifungal drugs on PBMC- and whole blood-based flow cytometric CD154+ Aspergillus fumigatus specific T-cell quantification

2020 ◽  
Vol 209 (5) ◽  
pp. 579-592
Author(s):  
Lukas Page ◽  
Chris D. Lauruschkat ◽  
Johanna Helm ◽  
Philipp Weis ◽  
Maria Lazariotou ◽  
...  
PLoS ONE ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. e17813 ◽  
Author(s):  
Urban Sester ◽  
Mathias Fousse ◽  
Jan Dirks ◽  
Ulrich Mack ◽  
Antje Prasse ◽  
...  

2014 ◽  
Vol 52 (01) ◽  
Author(s):  
W Dammermann ◽  
EM Stiel ◽  
M Kohring ◽  
J Schulze zur Wiesch ◽  
AW Lohse ◽  
...  

2021 ◽  
Vol 64 ◽  
pp. 101360
Author(s):  
Sam Arul Doss ◽  
Siddharth Mittal ◽  
Dolly Daniel
Keyword(s):  
T Cell ◽  

mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Suresh Ambati ◽  
Emma C. Ellis ◽  
Jianfeng Lin ◽  
Xiaorong Lin ◽  
Zachary A. Lewis ◽  
...  

ABSTRACT Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus cause life-threatening candidiasis, cryptococcosis, and aspergillosis, resulting in several hundred thousand deaths annually. The patients at the greatest risk of developing these life-threatening invasive fungal infections have weakened immune systems. The vulnerable population is increasing due to rising numbers of immunocompromised individuals as a result of HIV infection or immunosuppressed individuals receiving anticancer therapies and/or stem cell or organ transplants. While patients are treated with antifungals such as amphotericin B, all antifungals have serious limitations due to lack of sufficient fungicidal effect and/or host toxicity. Even with treatment, 1-year survival rates are low. We explored methods of increasing drug effectiveness by designing fungicide-loaded liposomes specifically targeted to fungal cells. Most pathogenic fungi are encased in cell walls and exopolysaccharide matrices rich in mannans. Dectin-2 is a mammalian innate immune membrane receptor that binds as a dimer to mannans and signals fungal infection. We coated amphotericin-loaded liposomes with monomers of Dectin-2’s mannan-binding domain, sDectin-2. sDectin monomers were free to float in the lipid membrane and form dimers that bind mannan substrates. sDectin-2-coated liposomes bound orders of magnitude more efficiently to the extracellular matrices of several developmental stages of C. albicans, C. neoformans, and A. fumigatus than untargeted control liposomes. Dectin-2-coated amphotericin B-loaded liposomes reduced the growth and viability of all three species more than an order of magnitude more efficiently than untargeted control liposomes and dramatically decreased the effective dose. Future efforts focus on examining pan-antifungal targeted liposomal drugs in animal models of fungal diseases. IMPORTANCE Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs.


2019 ◽  
Vol 152 (Supplement_1) ◽  
pp. S35-S36
Author(s):  
Hadrian Mendoza ◽  
Christopher Tormey ◽  
Alexa Siddon

Abstract In the evaluation of bone marrow (BM) and peripheral blood (PB) for hematologic malignancy, positive immunoglobulin heavy chain (IG) or T-cell receptor (TCR) gene rearrangement results may be detected despite unrevealing results from morphologic, flow cytometric, immunohistochemical (IHC), and/or cytogenetic studies. The significance of positive rearrangement studies in the context of otherwise normal ancillary findings is unknown, and as such, we hypothesized that gene rearrangement studies may be predictive of an emerging B- or T-cell clone in the absence of other abnormal laboratory tests. Data from all patients who underwent IG or TCR gene rearrangement testing at the authors’ affiliated VA hospital between January 1, 2013, and July 6, 2018, were extracted from the electronic medical record. Date of testing; specimen source; and morphologic, flow cytometric, IHC, and cytogenetic characterization of the tissue source were recorded from pathology reports. Gene rearrangement results were categorized as true positive, false positive, false negative, or true negative. Lastly, patient records were reviewed for subsequent diagnosis of hematologic malignancy in patients with positive gene rearrangement results with negative ancillary testing. A total of 136 patients, who had 203 gene rearrangement studies (50 PB and 153 BM), were analyzed. In TCR studies, there were 2 false positives and 1 false negative in 47 PB assays, as well as 7 false positives and 1 false negative in 54 BM assays. Regarding IG studies, 3 false positives and 12 false negatives in 99 BM studies were identified. Sensitivity and specificity, respectively, were calculated for PB TCR studies (94% and 93%), BM IG studies (71% and 95%), and BM TCR studies (92% and 83%). Analysis of PB IG gene rearrangement studies was not performed due to the small number of tests (3; all true negative). None of the 12 patients with false-positive IG/TCR gene rearrangement studies later developed a lymphoproliferative disorder, although 2 patients were later diagnosed with acute myeloid leukemia. Of the 14 false negatives, 10 (71%) were related to a diagnosis of plasma cell neoplasms. Results from the present study suggest that positive IG/TCR gene rearrangement studies are not predictive of lymphoproliferative disorders in the context of otherwise negative BM or PB findings. As such, when faced with equivocal pathology reports, clinicians can be practically advised that isolated positive IG/TCR gene rearrangement results may not indicate the need for closer surveillance.


Methods ◽  
2006 ◽  
Vol 38 (2) ◽  
pp. 77-83 ◽  
Author(s):  
Tanja Breinig ◽  
Martina Sester ◽  
Urban Sester ◽  
Andreas Meyerhans

Sign in / Sign up

Export Citation Format

Share Document