Identification of a single nuclear localization signal in the C-terminal domain of an Aspergillus DNA topoisomerase II

2002 ◽  
Vol 268 (3) ◽  
pp. 287-297 ◽  
Author(s):  
K.-H. Kim ◽  
T. Kanbe ◽  
T. Akashi ◽  
I. Mizuguchi ◽  
A. Kikuchi
1994 ◽  
Vol 14 (5) ◽  
pp. 3197-3207
Author(s):  
P R Caron ◽  
P Watt ◽  
J C Wang

A set of carboxy-terminal deletion mutants of Saccharomyces cerevisiae DNA topoisomerase II were constructed for studying the functions of the carboxyl domain in vitro and in vivo. The wild-type yeast enzyme is a homodimer with 1,429 amino acid residues in each of the two polypeptides; truncation of the C terminus to Ile-1220 has little effect on the function of the enzyme in vitro or in vivo, whereas truncations extending beyond Gln-1138 yield completely inactive proteins. Several mutant enzymes with C termini in between these two residues were found to be catalytically active but unable to complement a top2-4 temperature-sensitive mutation. Immunomicroscopy results suggest that the removal of a nuclear localization signal in the C-terminal domain is likely to contribute to the physiological dysfunction of these proteins; the ability of these mutant proteins to relax supercoiled DNA in vivo shows, however, that at least some of the mutant proteins are present in the nuclei in a catalytically active form. In contrast to the ability of the catalytically active mutant proteins to relax supercoiled intracellular DNA, all mutants that do not complement the temperature-dependent lethality and high frequency of chromosomal nondisjunction of top2-4 were found to lack decatenation activity in vivo. The plausible roles of the DNA topoisomerase II C-terminal domain, in addition to providing a signal for nuclear localization, are discussed in the light of these results.


1994 ◽  
Vol 14 (5) ◽  
pp. 3197-3207 ◽  
Author(s):  
P R Caron ◽  
P Watt ◽  
J C Wang

A set of carboxy-terminal deletion mutants of Saccharomyces cerevisiae DNA topoisomerase II were constructed for studying the functions of the carboxyl domain in vitro and in vivo. The wild-type yeast enzyme is a homodimer with 1,429 amino acid residues in each of the two polypeptides; truncation of the C terminus to Ile-1220 has little effect on the function of the enzyme in vitro or in vivo, whereas truncations extending beyond Gln-1138 yield completely inactive proteins. Several mutant enzymes with C termini in between these two residues were found to be catalytically active but unable to complement a top2-4 temperature-sensitive mutation. Immunomicroscopy results suggest that the removal of a nuclear localization signal in the C-terminal domain is likely to contribute to the physiological dysfunction of these proteins; the ability of these mutant proteins to relax supercoiled DNA in vivo shows, however, that at least some of the mutant proteins are present in the nuclei in a catalytically active form. In contrast to the ability of the catalytically active mutant proteins to relax supercoiled intracellular DNA, all mutants that do not complement the temperature-dependent lethality and high frequency of chromosomal nondisjunction of top2-4 were found to lack decatenation activity in vivo. The plausible roles of the DNA topoisomerase II C-terminal domain, in addition to providing a signal for nuclear localization, are discussed in the light of these results.


1998 ◽  
Vol 140 (3) ◽  
pp. 499-509 ◽  
Author(s):  
Michael J. Matunis ◽  
Jian Wu ◽  
Günter Blobel

RanGAP1 is the GTPase-activating protein for Ran, a small ras-like GTPase involved in regulating nucleocytoplasmic transport. In vertebrates, RanGAP1 is present in two forms: one that is cytoplasmic, and another that is concentrated at the cytoplasmic fibers of nuclear pore complexes (NPCs). The NPC-associated form of RanGAP1 is covalently modified by the small ubiquitin-like protein, SUMO-1, and we have recently proposed that SUMO-1 modification functions to target RanGAP1 to the NPC. Here, we identify the domain of RanGAP1 that specifies SUMO-1 modification and demonstrate that mutations in this domain that inhibit modification also inhibit targeting to the NPC. Targeting of a heterologous protein to the NPC depended on determinants specifying SUMO-1 modification and also on additional determinants in the COOH-terminal domain of RanGAP1. SUMO-1 modification and these additional determinants were found to specify interaction between the COOH-terminal domain of RanGAP1 and a region of the nucleoporin, Nup358, between Ran-binding domains three and four. Together, these findings indicate that SUMO-1 modification targets RanGAP1 to the NPC by exposing, or creating, a Nup358 binding site in the COOH-terminal domain of RanGAP1. Surprisingly, the COOH-terminal domain of RanGAP1 was also found to harbor a nuclear localization signal. This nuclear localization signal, and the presence of nine leucine-rich nuclear export signal motifs, suggests that RanGAP1 may shuttle between the nucleus and the cytoplasm.


PLoS ONE ◽  
2008 ◽  
Vol 3 (3) ◽  
pp. e1754 ◽  
Author(s):  
Emma L. Meczes ◽  
Kathryn L. Gilroy ◽  
Katherine L. West ◽  
Caroline A. Austin

1994 ◽  
Vol 14 (10) ◽  
pp. 6962-6974
Author(s):  
Y S Vassetzky ◽  
Q Dang ◽  
P Benedetti ◽  
S M Gasser

We present a novel assay for the study of protein-protein interactions involving DNA topoisomerase II. Under various conditions of incubation we observe that topoisomerase II forms complexes at least tetrameric in size, which can be sedimented by centrifugation through glycerol. The multimers are enzymatically active and can be visualized by electron microscopy. Dephosphorylation of topoisomerase II inhibits its multimerization, which can be restored at least partially by rephosphorylation of multiple sites within its 200 C-terminal amino acids by casein kinase II. Truncation of topoisomerase II just upstream of the major phosphoacceptor sites reduces its aggregation, rendering the truncated enzyme insensitive to either kinase treatments or phosphatase treatments. This is consistent with a model in which interactions involving the phosphorylated C-terminal domain of topoisomerase II aid either in chromosome segregation or in chromosome condensation.


2000 ◽  
Vol 113 (9) ◽  
pp. 1635-1647
Author(s):  
R. Rzepecki ◽  
P.A. Fisher

DNA topoisomerase II (topo II) is thought to be a nuclear enzyme; during interphase most was insoluble and could be recovered in the pellet after centrifugation of cell homogenates at 10,000 g (P-10). Upon entry into mitosis, the majority of topo II did not associate with condensed chromosomes but was apparently solubilized and redistributed throughout the cell. Although two non-chromosomal subfractions of mitotic topo II were defined by centrifugation at 130,000 g, the vast majority (>90%) was recovered in the pellet (P-130). In vivo nucleic acid interactions with topo II were monitored by a recently developed approach of UV-photo-crosslinking, immunoprecipitation and (32)P-labeling. P-10 (interphase) topo II was largely associated with DNA. P-130 (mitotic non-chromosomal) topo II was primarily associated with RNA. These nucleic acid interactions with both interphase and mitotic topo II occurred through the catalytically inert and as yet, poorly understood C-terminal domain of the protein. P-10 topo II was highly active enzymatically. Activity, measured by the ability of topo II to decatenate kDNA minicircles, was reduced by treatment with phosphatase. In contrast, P-130 topo II was relatively inactive but activity could be increased by phosphatase treatment. In vivo, P-130 topo II was more heavily phosphorylated than P-10 topo II; in both, only the C-terminal domain of topo II was detectably modified. Our observations suggest that cell cycle-dependent changes in the distribution, nucleic acid interactions and enzymatic activity of topo II are regulated, at least in part, by phosphorylation/dephosphorylation.


1992 ◽  
Vol 119 (5) ◽  
pp. 1023-1036 ◽  
Author(s):  
K Shiozaki ◽  
M Yanagida

Fission Yeast DNA topoisomerase II (165 kD) consists of an enzymatically active 125-kD core, approximately 10-kD NH2-terminal and 30-kD COOH-terminal domains. The question addressed in the present study is what is the role of the topo II termini. Although deletion of either the NH2 or the COOH terminus is viable, deletion of both termini is lethal; the termini share an essential role for viability. We show here that topo II phosphorylation sites are localized in the terminal domains, but dephosphorylated topo II is still active. The topo II terminal sequences are required for nuclear localization; topo II double terminal deletion mutants are deficient for nuclear targeting, whereas wild-type and single deletion mutant topo IIs are transported into the nucleus with different efficiencies. Functional subdomains in the NH2 terminus are further dissected; we identified a 15 amino acid nuclear localization sequence (NLS) which is essential for viability and nuclear localization when the COOH terminus is deleted. This NLS could be substituted with SV-40 large T-antigen NLS. Two other functional subdomains were found; a non-essential acidic stretch which is phosphorylated and apparently enhances the nuclear localization and an essential hydrophilic stretch of unknown function. Motifs similar to these three NH2-terminal subdomains are also found in the COOH terminus. Our results support the possibility that phosphorylation of topo II does not play an essential role in fission yeast.


Sign in / Sign up

Export Citation Format

Share Document