GWAS analysis using interspecific backcross progenies reveals superior blue catfish alleles responsible for strong resistance against enteric septicemia of catfish

2018 ◽  
Vol 293 (5) ◽  
pp. 1107-1120 ◽  
Author(s):  
Suxu Tan ◽  
Tao Zhou ◽  
Wenwen Wang ◽  
Yulin Jin ◽  
Xiaozhu Wang ◽  
...  
Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 687-694 ◽  
Author(s):  
Zhanjiang Liu ◽  
Attila Karsi ◽  
Ping Li ◽  
Dongfeng Cao ◽  
R Dunham

Abstract Catfish is the major aquaculture species in the United States. The hybrid catfish produced by crossing channel catfish females with blue catfish males exhibit a number of desirable production traits, but their mass production has been difficult. To introduce desirable genes from blue catfish into channel catfish through introgression, a genetic linkage map is helpful. In this project, a genetic linkage map was constructed using amplified fragment length polymorphism (AFLP). A total of 607 AFLP markers were analyzed using 65 primer combinations and an interspecific backcross resource family. A total of 418 AFLP markers were assigned to 44 linkage groups. Among the remaining 189 markers, 101 were not used because of significant segregation distortion, 29 were unlinked, and 59 were eliminated because they span very large distances. The 418 AFLP markers covered 1593 cM Kosambi. The AFLP markers showed a high level of clustering that appears to be related to certain primer combinations. This linkage map will serve as the basis for mapping a greater number of markers to provide a map with high enough resolution for it to be useful for selective breeding programs using introgression.


Genetics ◽  
1982 ◽  
Vol 102 (3) ◽  
pp. 539-556
Author(s):  
Don C Morizot ◽  
Michael J Siciliano

ABSTRACT The products of 49 protein-coding loci were examined by starch gel electrophoresis for populational variation in six species of Xiphophorus fishes and/or segregation in intra- and interspecific backcross and intercross hybrids. Electrophoretic variation was observed for 29 of the 35 locus products in a survey of 42 population samples. The highest frequency of polymorphic loci observed in noninbred populations was 0.143. After ten or more generations of inbreeding, all loci studied were monomorphic. Inbred strains generally exhibited the commonest electrophoretic alleles of the population from which they were derived. An assessment of genetic distances among Xiphophorus populations reflected classical systematic relationships and suggested incipient subspeciation between X. maculatus from different drainages as well as several species groups. Thirty-three loci were analyzed with respect to segregation in hybrids. The goodness of fit of segregations to Mendelian expectations at all loci analyzed (except loci in linkage group I) is interpreted as evidence for high genetic compatibility of the genomes of Xiphophorus species. It is anticipated that these data will result in a rapid expansion of the assignment of protein-coding loci to linkage groups in these lower vertebrate species.


Genetics ◽  
1989 ◽  
Vol 122 (3) ◽  
pp. 669-679
Author(s):  
L D Siracusa ◽  
A M Buchberg ◽  
N G Copeland ◽  
N A Jenkins

Abstract Recombinant inbred strain and interspecific backcross mice were used to create a molecular genetic linkage map of the distal portion of mouse chromosome 2. The orientation and distance of the Ada, Emv-13, Emv-15, Hck-1, Il-1a, Pck-1, Psp, Src-1 and Svp-1 loci from the beta 2-microglobulin locus and the agouti locus were established. Our mapping results have provided the identification of molecular markers both proximal and distal to the agouti locus. The recombinants obtained provide valuable resources for determining the direction of chromosome walking experiments designed to clone sequences at the agouti locus. Comparisons between the mouse and human genome maps suggest that the human homolog of the agouti locus resides on human chromosome 20q. Three loci not present on mouse chromosome 2 were also identified and were provisionally named Psp-2, Hck-2 and Hck-3. The Psp-2 locus maps to mouse chromosome 14. The Hck-2 locus maps near the centromere of mouse chromosome 4 and may identify the Lyn locus. The Hck-3 locus maps near the distal end of mouse chromosome 4 and may identify the Lck locus.


2021 ◽  
Vol 100 (1) ◽  
Author(s):  
KATIALISA KAMARUDDIN ◽  
MAIZURA ITHNIN ◽  
NGOOT-CHIN TING ◽  
ZULKIFLI YAAKUB ◽  
NIK SHAZANA NIK MOHD SANUSI ◽  
...  

Genetics ◽  
1997 ◽  
Vol 147 (2) ◽  
pp. 787-799
Author(s):  
Brad A Rikke ◽  
Dabney K Johnson ◽  
Thomas E Johnson

The murine albino-deletion complex developed as part of the Oak Ridge specific-locus test covers 6–11 cM of chromosome 7. This complex has proven to be a valuable resource for localizing traits to a small target region suitable for positional cloning. In this study, we mapped the endpoints of deletions in this complex using all of the available Mit simple-sequence length polymorphism (SSLP) markers. Concurrently, this mapping has determined the map order of nearly all of the SSLP markers, most of which were previously unresolved. The SSLP-based deletion map was confirmed and genetic distances were determined using the European Collaborative Interspecific Backcross panel of nearly a thousand mice. The average SSLP marker resolution is 0.3–0.4 cM, comparable to the cloning capacity of yeast artificial chromosomes (YACs). The SSLP markers were then used to construct a genetically anchored YAC framework map that further confirms the deletion map. We find that the largest deleted region distal to Tyr is about two to three times larger than the largest proximal deleted region, and the original C3H/101 regions flanking the deletions (moved to an St2A cch/cch background) are smaller than anticipated, which we suggest may result from increased recombination rates immediately flanking the deleted regions.


Author(s):  
Douglas Tave ◽  
Andrew S. Mcginty ◽  
Jesse A. Chappell ◽  
R. O. Smitherman

Sign in / Sign up

Export Citation Format

Share Document