Inducibility of chemical defenses in Norway spruce bark is correlated with unsuccessful mass attacks by the spruce bark beetle

Oecologia ◽  
2012 ◽  
Vol 170 (1) ◽  
pp. 183-198 ◽  
Author(s):  
Christian Schiebe ◽  
Almuth Hammerbacher ◽  
Göran Birgersson ◽  
Johanna Witzell ◽  
Peter E. Brodelius ◽  
...  
2021 ◽  
Author(s):  
Erica Jaakkola ◽  
Anna Maria Jönsson ◽  
Per-Ola Olsson ◽  
Maj-Lena Linderson ◽  
Thomas Holst

<p>Tree killing by spruce bark beetles (<em>Ips typographus</em>) is one of the main disturbances to Norway spruce (<em>Picea abies</em>) forests in Europe and the risk of outbreaks is amplified by climate change with effects such as increased risk of storm felling, tree drought stress and an additional generation of spruce bark beetles per year<sup>[1]</sup>. The warm and dry summer of 2018 triggered large outbreaks in Sweden, the increased outbreaks are still ongoing and affected about 8 million m<sup>3</sup> forest in 2020<sup>[2]</sup>. This is the so far highest record of trees killed by the spruce bark beetle in a single year in Sweden<sup>[2]</sup>. In 1990-2010, the spruce bark beetle killed on average 150 000 m<sup>3</sup> forest per year in southern Sweden<sup>[3]</sup>. Bark beetles normally seek and attack Norway spruces with lowered defense, i.e. trees that are wind-felled or experience prolonged drought stress<sup>[4]</sup>. However, as the number of bark beetle outbreaks increase, the risk of attacks on healthy trees also increase<sup>[5]</sup>. This causes a higher threat to forest industry, and lowers the possibilities to mitigate climate change in terms of potential decreases in carbon uptake if the forests die<sup>[4,5]</sup>. Norway spruce trees normally defend themselves by drenching the beetles in resin<sup>[6]</sup>. The resin in turn contains different biogenic volatile organic compounds (BVOCs), which can vary if the spruce is attacked by bark beetles or not<sup> [4,6]</sup>. The most abundant group of terpenoids (isoprene, monoterpenes and sesquiterpenes), is most commonly emitted from conifers, such as Norway spruce<sup>[7,8]</sup>. The aim of this study was to enable a better understanding of the direct defense mechanisms of spruce trees by quantifying BVOC emissions and its composition from individual trees under attack</p><p>To analyze the bark beetles’ impact on Norway spruce trees a method was developed using tree trunk chambers and adsorbent tubes. This enables direct measurements of the production of BVOCs from individual trees. Three different sites in Sweden, with different environmental conditions were used for the study and samples were collected throughout the growing season of 2019. After sampling, the tubes were analyzed in a lab using automated thermal desorption coupled to a gas chromatograph and a mass spectrometer to identify BVOC species and their quantity.</p><p>The preliminary results show a strong increase in BVOC emissions from a healthy tree that became infested during the data collection. The finalized results expect to enable better understanding of how spruce trees are affected by insect stress from bark beetles, and if bark beetle infestation will potentially result in increased carbon emission in the form of BVOCs.</p><p><strong>References</strong></p><p>[1] Jönsson et al. (2012). Agricultural and Forest Meteorology 166: 188–200<br>[2] Skogsstyrelsen, (2020). https://via.tt.se/pressmeddelande/miljontals-granar-dodades-av-granbarkborren-2020?publisherId=415163&releaseId=3288473<br>[3] Marini et al. (2017). Ecography, 40(12), 1426–1435.<br>[4] Raffa (1991). Photochemical induction by herbivores. pp. 245-276<strong><br></strong>[5] Seidl, et al. (2014). Nature Climate Change, 4(9), 806-810. <br>[6] Ghimire, et al. (2016). Atmospheric Environment, 126, 145-152.<br>[7] Niinemets, U. and Monson, R. (2013). ISBN 978-94-007-6606-8<br>[8] Kesselmeier, J. and Staudt, M. (1999). Journal of Atmospheric Chemistry, 33(1), pp.23-88</p>


2011 ◽  
Vol 74 (4) ◽  
pp. 345-350 ◽  
Author(s):  
Robert Jankowiak ◽  
Jacek Hilszczański

This study dealt with the species distribution and frequency of ophiostomatoid fungi associated with the bark beetle Ips typographus on Norway spruce and Scots pine in north-eastern Poland. At all locations high spruce bark beetle damage has occurred in 2002-2003. Fungi were isolated from beetles and from brood systems of trees infested by the spruce bark beetle. The ophiostomatoid fungi were represented by 13 species. A similar spectrum of ophiostomatoid fungi as that recorded from <em>Picea abies</em> was associated with <em>I. typographus</em> on <em>Pinus sylvestris</em> trees. The most frequent ophiostomatoid species isolated from beetles, phloem and sapwood of Norway spruce were <em>O. bicolor</em> and <em>O. penicillatum</em>. The frequency of occurrence of ophiostomatoid fungi varied significantly among the examined locations. <em>O. bicolor</em> was the most frequently found species on Scots pine infested by <em>I. typographus</em>. The potential role of ophiostomatoid fungi in the epidemiology of <em>I. typographus</em> is discussed. Additionally, we also recorded how the ophiostomatoid fungi associated with spruce bark beetle could grow into phloem and sapwood of <em>Pinus sylvestris</em> trees.


2013 ◽  
Vol 162 (3) ◽  
pp. 1324-1336 ◽  
Author(s):  
A. Hammerbacher ◽  
A. Schmidt ◽  
N. Wadke ◽  
L. P. Wright ◽  
B. Schneider ◽  
...  

Nematology ◽  
2015 ◽  
Vol 17 (10) ◽  
pp. 1165-1183 ◽  
Author(s):  
Marek Tomalak ◽  
Jan J. Pomorski

Bursaphelenchus piceae sp. n. is described from the bark of Norway spruce, Picea abies. Adults and propagative juveniles of the nematode are found in larval galleries of the six-toothed spruce bark beetle, Pityogenes chalcographus, while its dauer juveniles aggregate in Malpighian tubules of older larvae, pupae and adult beetles. The new species is characterised by the body length of 719 (530-945) μm in female and 632 (474-808) μm in male, its moderately slender body (a = 41.4 (35.4-50.2) and 42.6 (35.1-47.2) in female and male, respectively), and small spicules (16.0 (14.0-18.3) μm along arc and 13.7 (12.2-15.5) μm along chord). The extended anterior vulval lip in female, lateral fields with four incisures, long post-uterine sac extending for 67-91% of vulva-anus distance, and number (7) and arrangement of male caudal papillae suggest that B. piceae sp. n. is closely related to the xylophilus-group yet it differs by the relatively small, claw-like spicules with no cucullus at the tip. The close relation of B. piceae sp. n. to the xylophilus-group has been confirmed by DNA sequencing and phylogenetic analysis. Morphologically B. piceae sp. n. most closely resembles B. tokyoensis and B. fagi but can be separated from both by the unique shape of the spicules. The taxonomic separation of the new species is also confirmed by the unique molecular profile of the ITS region (ITS-RFLP). The presence of dauer juveniles of B. piceae sp. n. in Malpighian tubules of adult P. chalcographus may lead to extensive damage to this organ as shown by local expansion of the tubule basement membrane and degradation of its cellular epithelium. Detailed phylogenetic analysis revealed that B. piceae sp. n. together with five other bark beetle-associated Bursaphelenchus species, namely B. trypophloei, B. masseyi, B. tiliae, B. tokyoensis and B. fagi, constitutes a small phylogenetic clade that is most closely located to, but separate from, the xylophilus-group.


Trees ◽  
2011 ◽  
Vol 25 (6) ◽  
pp. 965-973 ◽  
Author(s):  
R. Jakuš ◽  
M. Edwards-Jonášová ◽  
P. Cudlín ◽  
M. Blaženec ◽  
M. Ježík ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1290
Author(s):  
Branislav Hroššo ◽  
Pavel Mezei ◽  
Mária Potterf ◽  
Andrej Majdák ◽  
Miroslav Blaženec ◽  
...  

Research Highlights: Bark beetles are important agents of disturbance regimes in temperate forests, and specifically in a connected wind-bark beetle disturbance system. Large-scale windthrows trigger population growth of the European spruce bark beetle (Ips typographus L.) from endemic to epidemic levels, thereby allowing the killing of Norway spruce trees over several consecutive years. Background and Objectives: There is a lack of evidence to differentiate how outbreaks are promoted by the effects of environmental variables versus beetle preferences of trees from endemic to outbreak. However, little is known about how individual downed-tree characteristics and local conditions such as tree orientation and solar radiation affect beetle colonization of downed trees. Materials and Methods: To answer this question, we investigated the infestation rates and determined tree death categories (uprooted, broken, and stump) in wind-damaged areas in Western Tatra Mts. in Carpathians (Slovakia) from 2014–2016, following a windthrow in May 2014. In total, we investigated 225 trees over eight transects. For every tree, we measured its morphological (tree height, crown characteristics), environmental (solar radiation, terrain conditions, trunk zenith), temporal (time since wind damage), and beetle infestation (presence, location of attack, bark desiccation) parameters. We applied Generalized Additive Mixed Models (GAMM) to unravel the main drivers of I. typographus infestations. Results: Over the first year, beetles preferred to attack broken trees and sun-exposed trunk sides over uprooted trees; the infestation on shaded sides started in the second year along with the infestation of uprooted trees with lower desiccation rates. We found that time since wind damage, stem length, and incident solar radiation increased the probability of beetle infestation, although both solar radiation and trunk zenith exhibited nonlinear variability. Our novel variable trunk zenith appeared to be an important predictor of bark beetle infestation probability. We conclude that trunk zenith as a simple measure defining the position of downed trees over the terrain can anticipate beetle infestation. Conclusions: Our findings contribute to understanding of the bark beetle’s preferences to colonize windthrown trees in the initial years after the primary wind damage. Further, our findings can help to identify trees that are most susceptible to beetle infestation and to prioritize management actions to control beetle population while maintaining biodiversity.


Biologia ◽  
2006 ◽  
Vol 61 (6) ◽  
Author(s):  
Hüseyin Yilmax ◽  
Kazım Sezen ◽  
Hatice Kati ◽  
Zihni Demirbağ

AbstractThe European spruce bark beetle, Dendroctonus micans Kugelann (Coleoptera, Scolytidae), is one of the most serious pests of oriental spruce (Picea orientalis L.) in Turkey. In this study, we investigated bacterial flora of D. micans collected from different populations of the forests of Eastern Black Sea Region of Turkey from 2002 to 2004. Seven different bacteria were isolated from healthy, diseased and dead specimens based on the color of colony and morphology. According to morphological, physiological and biochemical properties, metobolic enyzme profile by BIOLOG microtiter plate system, and total cellular fatty acid profile by Microbial Identification System (MIS), isolates were identified as Micrococcus luteus, Bacillus thuringiensis subsp. morrisoni, Serratia grimesii, Enterobacter cloaceae, Enterobacter intermedius, Streptococcus sp. and Pseudomonas putida. This is the first study on the bacterial flora of D. micans.


Sign in / Sign up

Export Citation Format

Share Document