Seabirds drive plant species turnover on small Mediterranean islands at the expense of native taxa

Oecologia ◽  
2000 ◽  
Vol 122 (3) ◽  
pp. 427-434 ◽  
Author(s):  
E. Vidal ◽  
F. Médail ◽  
T. Tatoni ◽  
V. Bonnet
1998 ◽  
Vol 76 (2) ◽  
pp. 321-331 ◽  
Author(s):  
Frédéric Médail ◽  
Éric Vidal

The effects of physiographic variables (area, isolation, elevation, and substrate) and habitat diversity on plant species richness and composition have been investigated on some Mediterranean islands (southeastern France). The number of species - area relationship is significant but there are more diverse vegetation patterns on smallest islands (area smaller than 3.5 ha and, ultimately, 0.2 ha). Although the species composition is positively correlated to the distance from the continent, the effect of isolation is not so obvious because of the small distance of these continental islands from the continent. Some islands nearest to shore show very different plant species composition, suggesting a nonselective plant dispersal through some narrow stretches of sea. Habitat diversity represents one of the major explanatory factors of the species richness; nevertheless, it is not possible to settle between the two hypotheses effect of habitat diversity versus effect of area per se because of the correlation between the two factors. Key words: Mediterranean islands, insular biogeography, number of species - area relationship, isolation, habitat diversity, islets.


2007 ◽  
Vol 16 (14) ◽  
pp. 3951-3962 ◽  
Author(s):  
Milla Hilli ◽  
Markku T. Kuitunen ◽  
Jukka Suhonen

2014 ◽  
Vol 30 (5) ◽  
pp. 419-434 ◽  
Author(s):  
Tijl Essens ◽  
Euridice Leyequién ◽  
Carmen Pozo ◽  
Henricus F. M. Vester ◽  
Hector A. Hernández-Arana

Abstract:Understanding patterns in plant and herbivorous insect diversity across spatial and temporal scales is fundamental to ecology, but comparative multi-taxonomic studies in tropical seasonally dry forests remain scarce. In 36 sites, distributed over three forest age classes (5–10 y, 10–30 y, >100 y) and three seasonal forest types (dry, intermediate, humid), we sampled plants of different stem diameter classes while caterpillars were sampled across vertically distributed forest layers during three seasons over the year. We recorded 299 plant species and 485 caterpillar morphospecies. For large woody plants, species numbers showed a gradually increasing trend with forest age in the intermediate and humid forest types, while the main portion of explained variation in overall species turnover was accounted for by the forest type × forest age interaction (21.3–23.1% of 44.4–48.7%). Ordinations and multivariate pairwise comparisons suggested a faster but also very distinct successional development of species diversity of large plants in the driest compared with humid and intermediate forest types. In contrast, highest species numbers of small plants in the undergrowth was often found in the 5–10 y-old vegetation across forest types, whereas forest type was the major factor in overall species turnover (contributing 24.2% of 48.7% explained variation). Caterpillar species turnover was most correlated to species turnover of small plants; however, variation in caterpillar species diversity appears to be mostly regulated by seasonal cues, and to a lesser extent by patterns of regional turnover and local diversity of undergrowth plant species.


Author(s):  
Johanna I. Murillo-Pacheco ◽  
Matthias Rös ◽  
Federico Escobar ◽  
Francisco Castro-Lima ◽  
José R Verdú ◽  
...  

Accelerated degradation of the wetlands and fragmentation of surrounding vegetation in the Andean-Orinoco Piedmont are the main threats to diversity and ecological integrity of these ecosystems; however, information on this topic is of limited availability. In this region, we evaluated the value of 37 lentic wetlands as reservoirs of woody and aquatic plants and, analyzed diversity and changes in species composition within and among groups defined according to management given by: 1) type (swamps, heronries, rice fields, semi-natural lakes, constructed lakes and fish farms) and, 2) origins (natural, mixed and artificial). A total of 506 plant species were recorded: 80% woody and 20% aquatic. Of these, 411 species (81%) were considered species typical of the area (Meta Piedmont distribution). Diversity patterns seem to be driven by high landscape heterogeneity and wetland management. The fish farms presented the highest diversity of woody plants, while swamps ranked highest for aquatic plant diversity. Regarding wetland origin, the artificial systems were the most diverse, but natural wetlands presented the highest diversity of typical species and can therefore be considered representative ecosystems at the regional scale. Our results suggest that lentic wetlands act as refuges for native vegetation of Meta Piedmont forest, hosting 55% of the woody of Piedmont species and 29% of the aquatic species of Orinoco basin. The wetlands showed a high species turnover and the results indicated that small wetlands (mean±SD: size = 11±18.7 ha), with a small area of surrounding forest (10±8.6 ha) supported high local and regional plant diversity. To ensure long-term conservation of lentic wetlands, it is necessary to develop management and conservation strategies that take both natural and created wetlands into account.


2021 ◽  
Vol 97 (10) ◽  
Author(s):  
Shota Masumoto ◽  
Ryo Kitagawa ◽  
Keita Nishizawa ◽  
Ryo Kaneko ◽  
Takashi Osono ◽  
...  

ABSTRACT Metabarcoding technologies for soil fungal DNA pools have enabled to capture the diversity of fungal community and the agreement of their β-diversity with plant β-diversity. However, processes underlying the synchrony of the aboveground–belowground biodiversity is still unclear. By using partitioning methods for plant β-diversity, this study explored the process driving synchrony in tundra ecosystems, in which drastic vegetation shifts are observed with climate warming. Our methods based on Baselga's partitioning enabled the division of plant β-diversity into two phenomena and three functional components. Correlation of fungal β-diversity with the components of plant β-diversity showed that the spatial replacement of fungi was promoted by plant species turnover, in particular, plant species turnover with functional exchange. In addition, spatial variety of graminoid or forbs species, rather than shrubs, enhanced fungal β-diversity. These results suggest the importance of small-scale factors such as plant–fungal interactions or local environments modified by plants for the fungal community assemblage. The process-based understanding of community dynamics of plants and fungi allows us to predict the ongoing shrub encroachment in the Arctic region, which could weaken the aboveground–belowground synchrony.


2015 ◽  
Vol 43 (2) ◽  
pp. 289-300 ◽  
Author(s):  
Mirkka M. Jones ◽  
Neil Gibson ◽  
Colin Yates ◽  
Simon Ferrier ◽  
Karel Mokany ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document