scholarly journals Nets of Lines with the Combinatorics of the Square Grid and with Touching Inscribed Conics

Author(s):  
Alexander I. Bobenko ◽  
Alexander Y. Fairley

AbstractIn the projective plane, we consider congruences of straight lines with the combinatorics of the square grid and with all elementary quadrilaterals possessing touching inscribed conics. The inscribed conics of two combinatorially neighbouring quadrilaterals have the same touching point on their common edge-line. We suggest that these nets are a natural projective generalisation of incircular nets. It is shown that these nets are planar Koenigs nets. Moreover, we show that general Koenigs nets are characterised by the existence of a 1-parameter family of touching inscribed conics. It is shown that the lines of any grid of quadrilaterals with touching inscribed conics are tangent to a common conic. These grids can be constructed via polygonal chains that are inscribed in conics. The special case of billiards in conics corresponds to incircular nets.

2009 ◽  
Vol 18 (5) ◽  
pp. 691-705 ◽  
Author(s):  
GYÖRGY ELEKES ◽  
MIKLÓS SIMONOVITS ◽  
ENDRE SZABÓ

We give a very general sufficient condition for a one-parameter family of curves not to have n members with ‘too many’ (i.e., a near-quadratic number of) triple points of intersections. As a special case, a combinatorial distinction between straight lines and unit circles will be shown. (Actually, this is more than just a simple application; originally this motivated our results.)


2021 ◽  
Vol 31 (2) ◽  
Author(s):  
Michael Herrmann ◽  
Karsten Matthies

AbstractWe study the eigenvalue problem for a superlinear convolution operator in the special case of bilinear constitutive laws and establish the existence and uniqueness of a one-parameter family of nonlinear eigenfunctions under a topological shape constraint. Our proof uses a nonlinear change of scalar parameters and applies Krein–Rutman arguments to a linear substitute problem. We also present numerical simulations and discuss the asymptotics of two limiting cases.


1992 ◽  
Vol 35 (4) ◽  
pp. 560-568 ◽  
Author(s):  
C. Thas

AbstractThe main result of this paper is a theorem about three conies in the complex or the real complexified projective plane. Is this theorem new? We have never seen it anywhere before. But since the golden age of projective geometry so much has been published about conies that it is unlikely that no one noticed this result. On the other hand, why does it not appear in the literature? Anyway, it seems interesting to "repeat" this property, because several theorems in connection with straight lines and (or) conies in projective, affine or euclidean planes are in fact special cases of this theorem. We give a few classical examples: the theorems of Pappus-Pascal, Desargues, Pascal (or its converse), the Brocard points, the point of Miquel. Finally, we have never seen in the literature a proof of these theorems using the same short method see the proof of the main theorem).


1964 ◽  
Vol 16 ◽  
pp. 683-700 ◽  
Author(s):  
Hans Schwerdtfeger

The idea of considering the set of the elements of a group as a space, provided with a topology, measure, or metric, connected somehow with the group operation, has been used often in the work of E. Cartan and others. In the present paper we shall study a very special group whose space can be embedded naturally into a projective plane and where the straight lines have a very simple group-theoretical interpretation. It remains to be seen whether this geometrical embedding in a projective space can be extended to other classes of groups and whether the method could become an instrument of geometrical investigation, like co-ordinates or reflections. In the final section it is shown how a geometrical theorem may lead to relations within the group.


Author(s):  
Qozaqova Munojat Sharifjanovna

Annotation: To develop students' understanding of straight lines and planes and to develop skills and competencies in working on related issues. The listener must complete the given task on A4 paper with the necessary tools. Keywords: straight lines, perpendicular, horizontal projection, frontal projections.


Author(s):  
M. Kretov

The complex (three-parameter family) of elliptic cylinders is investigated in the three-dimensional affine space, in which the characteristic multiplicity of the forming element consists of three coordinate axes. The focal variety of the forming element of the considered variety is geometrically characterized. Geometric properties of the complex under study were obtained. It is shown that the studied manifold exists and is determined by a completely integrable system of differential equations. It is proved that the focal variety of the forming element of the complex consists of four geometrically characterized points. The center of the ray of the straight-line congruence of the axes of the cylinder, the indicatrix of the second coordinate vector, the second coordinate line and one of the coordinate planes are fixed. The indicatrix of the first coordinate vector describes a one-parameter family of lines with tangents parallel to the second coordinate vector. The end of the first coordinate vector describes a one-parameter family of lines with tangents parallel to the third coordinate vector. The indicatrix of the third coordinate vector and its end describe congruences of planes parallel to the first coordinate plane. The points of the first coordinate line and the first coordinate plane describe one-parameter families of planes parallel to the coordinate plane indicated above.


2017 ◽  
Vol 25 (2) ◽  
pp. 107-119
Author(s):  
Roland Coghetto

Summary In this article we check, with the Mizar system [2], Pascal’s theorem in the real projective plane (in projective geometry Pascal’s theorem is also known as the Hexagrammum Mysticum Theorem)1. Pappus’ theorem is a special case of a degenerate conic of two lines. For proving Pascal’s theorem, we use the techniques developed in the section “Projective Proofs of Pappus’ Theorem” in the chapter “Pappus’ Theorem: Nine proofs and three variations” [11]. We also follow some ideas from Harrison’s work. With HOL Light, he has the proof of Pascal’s theorem2. For a lemma, we use PROVER93 and OTT2MIZ by Josef Urban4 [12, 6, 7]. We note, that we don’t use Skolem/Herbrand functions (see “Skolemization” in [1]).


1964 ◽  
Vol 16 ◽  
pp. 169-190 ◽  
Author(s):  
N. D. Lane ◽  
K. D. Singh

This paper follows naturally a note on parabolic differentiation (2) in which the parabolically differentiable points in the real affine plane were discussed. In the parabolic case, the four-parameter family of parabolas in the affine plane led to three differentiability conditions. In the present paper, the five-parameter family of conies in the real projective plane gives rise to four differentiability conditions and a point of an arc in the projective plane is called conically differentiable if these four conditions are satisfied. The differentiable points are classified by the nature of their families of osculating conies, superosculating conies, and their ultraosculating conies.


2008 ◽  
Vol 25 (03) ◽  
pp. 411-420 ◽  
Author(s):  
HUI ZHU ◽  
XIONGDA CHEN

Conjugate gradient methods are efficient to minimize differentiable objective functions in large dimension spaces. Recently, Dai and Yuan introduced a tree-parameter family of nonlinear conjugate gradient methods and show their convergence. However, line search strategies usually bring computational burden. To overcome this problem, in this paper, we study the global convergence of a special case of three-parameter family(the CD-DY family) in which the line search procedures are replaced by fixed formulae of stepsize.


1956 ◽  
Vol 8 ◽  
pp. 532-562 ◽  
Author(s):  
N. S. Mendelsohn

1. Introduction and summary. In her papers (12) and (13) R. Moufang discusses projective plane geometries which satisfy the axiom of the uniqueness of the fourth harmonic point. Her main result is that in such geometries non-homogeneous co-ordinates may be assigned to the points of the plane (except for the “line at infinity”) in such a way that straight lines have equations of the forms aαx + y + β = 0, or x + γ − 0.


Sign in / Sign up

Export Citation Format

Share Document