scholarly journals Blue light advances bud burst in branches of three deciduous tree species under short-day conditions

Trees ◽  
2018 ◽  
Vol 32 (4) ◽  
pp. 1157-1164 ◽  
Author(s):  
Craig C. Brelsford ◽  
T. Matthew Robson
2018 ◽  
Author(s):  
Craig C. Brelsford ◽  
T Matthew Robson

AbstractDuring spring, utilising multiple cues allow temperate tree species to coordinate their bud burst and leaf out, at the right moment to capitalise on favourable conditions for photosynthesis. Whilst the effect of blue light (400-500nm) has been shown to increase percentage bud burst of axillary shoots of Rosa sp, the effects of blue light on spring-time bud burst of temperate deciduous tree species has not previously been reported. We tested the hypotheses that blue light would advance spring bud burst in temperate tree species, and that late-successional species would respond more than early-successional species, who’s bud burst is primarily determined by temperature. The bud development of Alnus glutinosa, Betula pendula, and Quercus robur branches, cut from dormant trees, was monitored under two light treatments of equal photosynthetically active radiation (PAR, 400-700 nm) and temperature, either with or without blue light, under controlled environmental conditions. In the presence of blue light, the mean time required to reach 50% bud burst was reduced by 3.3 days in Betula pendula, 6 days in Alnus glutinosa, and 6.3 days in Quercus robur. This result highlights the potential of the blue region of the solar spectrum to be used as an extra cue that could help plants to regulate their spring phenology, alongside photoperiod and temperature. Understanding how plants combine photoreceptor-mediated cues with other environmental cues such as temperature to control phenology is essential if we are to accurately predict how tree species might respond to climate change.Key MessageAn LED spectrum containing blue light advanced bud burst in branches of Betula pendula, Alnus glutinosa and Quercus robur compared with a spectrum without blue light in a controlled environment.


1995 ◽  
Vol 95 (3) ◽  
pp. 399-408 ◽  
Author(s):  
Elena Toll ◽  
Federico J. Castillo ◽  
Pierre Crespi ◽  
Michele Crevecoeur ◽  
Hubert Greppin

Oecologia ◽  
2013 ◽  
Vol 174 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Noriyuki Osada ◽  
Yoshihiko Okabe ◽  
Daisuke Hayashi ◽  
Tomonori Katsuyama ◽  
Naoko Tokuchi
Keyword(s):  

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5843-5858
Author(s):  
Seray Özden Keleş

The sapling stage is an important phase due to maintaining plant growth, stability, and survival over the life cycle of trees. However, there are limited investigations in the literature related to both growth and stability of different tree species. This study thus investigated how different tree species at the sapling stage showed different anatomical, morphological, and flexural traits despite being of similar age and growing under the same environmental conditions. The variation of sapling properties was determined in two deciduous tree species: common oak (Quercus robur L.) and Oriental beech (Fagus orientalis Lipsky). The results of anatomical and morphological measurements showed that the highest average values of ray length, ray width, pith radius, pith%, bark%, and node numbers were obtained in oak saplings, whereas average ring width, number of rays, and wood% were found to be higher in beech saplings. Oak also exhibited better functional stability in its saplings. The flexural properties were almost 60% greater in oak stems than beech stems. The variations in flexural properties were explained by the morphological and anatomical traits since stability was positively correlated with pith radius, pith%, and bark% and negatively correlated with the number of rays and wood%.


Ecology ◽  
2001 ◽  
Vol 82 (3) ◽  
pp. 698-704 ◽  
Author(s):  
P. Barbosa ◽  
A. E. Segarra ◽  
P. Gross ◽  
A. Caldas ◽  
K. Ahlstrom ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Malleshaiah SharathKumar ◽  
Ep Heuvelink ◽  
Leo F. M. Marcelis ◽  
Wim van Ieperen

Shorter photoperiod and lower daily light integral (DLI) limit the winter greenhouse production. Extending the photoperiod by supplemental light increases biomass production but inhibits flowering in short-day plants such as Chrysanthemum morifolium. Previously, we reported that flowering in growth-chamber grown chrysanthemum with red (R) and blue (B) LED-light could also be induced in long photoperiods by applying only blue light during the last 4h of 15h long-days. This study investigates the possibility to induce flowering by extending short-days in greenhouses with 4h of blue light. Furthermore, flower induction after 4h of red light extension was tested after short-days RB-LED light in a growth-chamber and after natural solar light in a greenhouse. Plants were grown at 11h of sole source RB light (60:40) in a growth-chamber or solar light in the greenhouse (short-days). Additionally, plants were grown under long-days, which either consisted of short-days as described above extended with 4h of B or R light to long-days or of 15h continuous RB light or natural solar light. Flower initiation and normal capitulum development occurred in the blue-extended long-days in the growth-chamber after 11h of sole source RB, similarly as in short-days. However, when the blue extension was applied after 11h of full-spectrum solar light in a greenhouse, no flower initiation occurred. With red-extended long-days after 11h RB (growth-chamber) flower initiation occurred, but capitulum development was hindered. No flower initiation occurred in red-extended long-days in the greenhouse. These results indicate that multiple components of the daylight spectrum influence different phases in photoperiodic flowering in chrysanthemum in a time-dependent manner. This research shows that smart use of LED-light can open avenues for a more efficient year-round cultivation of chrysanthemum by circumventing the short-day requirement for flowering when applied in emerging vertical farm or plant factories that operate without natural solar light. In current year-round greenhouses’ production, however, extension of the natural solar light during the first 11 h of the photoperiod with either red or blue sole LED light, did inhibit flowering.


Author(s):  
Weixue Mu ◽  
Jinpu Wei ◽  
Ting Yang ◽  
Yannan Fan ◽  
Le Cheng ◽  
...  

Nyssa yunnanensis is a deciduous tree in family Nayssaceae within the order Cornales. As only 8 individuals in 2 sites recorded in Yunnan province of China, the species was listed as the China’s national grade-I protection species in 1999, and also as one of 120 PSESP(Plant Species with Extremely Small Populations) in Implementation Plan of Rescuing and Conserving China’s Plant Species with extremely Small Populations(PSESP) (2011-2-15). N. yunnanensis was also been evaluated as Critically Endangered in IUCN red list and Threatened Species List of China's Higher Plants. Hence understanding the genomic characteristics of this highly endangered Tertiary relict tree species is essential, especially for developing conservation strategies. Here we sequenced and annotated the genome of N. yunnanensis using 10X genomics linked-reads sequencing data. The de novo assembled genome is 1474Mb in length with a scaffold N50 length of 985.59kb. We identified 823.51Mb of non-redundant sequence as repetitive elements and annotated 39,803 protein-coding genes in the assembly. Our result provided the genomic characteristics of N. yunnanensis, which will provide valuable resources for future genomic and evolutionary studies, especially for conservation biology studies of this extremely threatened tree species.


Sign in / Sign up

Export Citation Format

Share Document