scholarly journals Possibilities of using deciduous tree species in trace element biomonitoring in an urban area (Plovdiv, Bulgaria)

2014 ◽  
Vol 5 (2) ◽  
pp. 196-202 ◽  
Author(s):  
Slaveya Petrova ◽  
Lilyana Yurukova ◽  
Iliana Velcheva
1995 ◽  
Vol 95 (3) ◽  
pp. 399-408 ◽  
Author(s):  
Elena Toll ◽  
Federico J. Castillo ◽  
Pierre Crespi ◽  
Michele Crevecoeur ◽  
Hubert Greppin

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 692
Author(s):  
MD Abdul Mueed Choudhury ◽  
Ernesto Marcheggiani ◽  
Andrea Galli ◽  
Giuseppe Modica ◽  
Ben Somers

Currently, the worsening impacts of urbanizations have been impelled to the importance of monitoring and management of existing urban trees, securing sustainable use of the available green spaces. Urban tree species identification and evaluation of their roles in atmospheric Carbon Stock (CS) are still among the prime concerns for city planners regarding initiating a convenient and easily adaptive urban green planning and management system. A detailed methodology on the urban tree carbon stock calibration and mapping was conducted in the urban area of Brussels, Belgium. A comparative analysis of the mapping outcomes was assessed to define the convenience and efficiency of two different remote sensing data sources, Light Detection and Ranging (LiDAR) and WorldView-3 (WV-3), in a unique urban area. The mapping results were validated against field estimated carbon stocks. At the initial stage, dominant tree species were identified and classified using the high-resolution WorldView3 image, leading to the final carbon stock mapping based on the dominant species. An object-based image analysis approach was employed to attain an overall accuracy (OA) of 71% during the classification of the dominant species. The field estimations of carbon stock for each plot were done utilizing an allometric model based on the field tree dendrometric data. Later based on the correlation among the field data and the variables (i.e., Normalized Difference Vegetation Index, NDVI and Crown Height Model, CHM) extracted from the available remote sensing data, the carbon stock mapping and validation had been done in a GIS environment. The calibrated NDVI and CHM had been used to compute possible carbon stock in either case of the WV-3 image and LiDAR data, respectively. A comparative discussion has been introduced to bring out the issues, especially for the developing countries, where WV-3 data could be a better solution over the hardly available LiDAR data. This study could assist city planners in understanding and deciding the applicability of remote sensing data sources based on their availability and the level of expediency, ensuring a sustainable urban green management system.


2000 ◽  
Vol 108 (3) ◽  
pp. 413-424 ◽  
Author(s):  
M Howsam ◽  
K.C Jones ◽  
P Ineson
Keyword(s):  

Oecologia ◽  
2013 ◽  
Vol 174 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Noriyuki Osada ◽  
Yoshihiko Okabe ◽  
Daisuke Hayashi ◽  
Tomonori Katsuyama ◽  
Naoko Tokuchi
Keyword(s):  

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5843-5858
Author(s):  
Seray Özden Keleş

The sapling stage is an important phase due to maintaining plant growth, stability, and survival over the life cycle of trees. However, there are limited investigations in the literature related to both growth and stability of different tree species. This study thus investigated how different tree species at the sapling stage showed different anatomical, morphological, and flexural traits despite being of similar age and growing under the same environmental conditions. The variation of sapling properties was determined in two deciduous tree species: common oak (Quercus robur L.) and Oriental beech (Fagus orientalis Lipsky). The results of anatomical and morphological measurements showed that the highest average values of ray length, ray width, pith radius, pith%, bark%, and node numbers were obtained in oak saplings, whereas average ring width, number of rays, and wood% were found to be higher in beech saplings. Oak also exhibited better functional stability in its saplings. The flexural properties were almost 60% greater in oak stems than beech stems. The variations in flexural properties were explained by the morphological and anatomical traits since stability was positively correlated with pith radius, pith%, and bark% and negatively correlated with the number of rays and wood%.


Ecology ◽  
2001 ◽  
Vol 82 (3) ◽  
pp. 698-704 ◽  
Author(s):  
P. Barbosa ◽  
A. E. Segarra ◽  
P. Gross ◽  
A. Caldas ◽  
K. Ahlstrom ◽  
...  

Author(s):  
Weixue Mu ◽  
Jinpu Wei ◽  
Ting Yang ◽  
Yannan Fan ◽  
Le Cheng ◽  
...  

Nyssa yunnanensis is a deciduous tree in family Nayssaceae within the order Cornales. As only 8 individuals in 2 sites recorded in Yunnan province of China, the species was listed as the China’s national grade-I protection species in 1999, and also as one of 120 PSESP(Plant Species with Extremely Small Populations) in Implementation Plan of Rescuing and Conserving China’s Plant Species with extremely Small Populations(PSESP) (2011-2-15). N. yunnanensis was also been evaluated as Critically Endangered in IUCN red list and Threatened Species List of China's Higher Plants. Hence understanding the genomic characteristics of this highly endangered Tertiary relict tree species is essential, especially for developing conservation strategies. Here we sequenced and annotated the genome of N. yunnanensis using 10X genomics linked-reads sequencing data. The de novo assembled genome is 1474Mb in length with a scaffold N50 length of 985.59kb. We identified 823.51Mb of non-redundant sequence as repetitive elements and annotated 39,803 protein-coding genes in the assembly. Our result provided the genomic characteristics of N. yunnanensis, which will provide valuable resources for future genomic and evolutionary studies, especially for conservation biology studies of this extremely threatened tree species.


AoB Plants ◽  
2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Vikki L Rodgers ◽  
Nicholas G Smith ◽  
Susanne S Hoeppner ◽  
Jeffrey S Dukes

2021 ◽  
Author(s):  
Annette Debel ◽  
Achim Bräuning

<p>Latest drought events and their already visible damage to trees highlight the crucial need to assess the current state and resilience of forest ecosystems in southern Germany. However, commonly applied dendroclimatic approaches rarely take into account, how weather patterns affecting trees are modified by topographic conditions. For this purpose, three main tree species were studied at three low mountain ranges and three corresponding basins in the topographically complex province of Bavaria (southeast Germany). A response analysis between climate proxies and tree-ring widths was used to investigate climate-growth relationships over the past 50 years of both coniferous and deciduous tree species at each forest site. Temporal stability of tree responses to climate was compared for two 25-year periods to detect possible modifications in climate-growth correlations. A pointer year analysis was also conducted to analyze tree response to climatic extreme events. The results showed that Scots pine (<em>Pinus sylvestris</em>) was the most vulnerable and least drought-resistant of the investigated tree species. Although Norway spruce (<em>Picea abies</em>) and European beech (<em>Fagus sylvatica</em>) benefited from an extended growing season at high elevation sites, they showed higher drought sensitivity over the past 25 years. Beech responses were rather inhomogeneous and even differed in the optimal precipitation period. However, lower correlation coefficients for summer precipitation at the driest site may indicate the ability of beech to adapt to less summer precipitation. Nevertheless, increasing drought frequency, as predicted, poses a serious threat to all studied tree species, including even the colder and more humid sites. Hence, to more accurately estimate risk potentials under future weather conditions, we will combine dendroclimatological results with climate modelling scenarios, particularly expected future frequencies of critical weather types on the local scale.</p>


Sign in / Sign up

Export Citation Format

Share Document