Relationship between seasonal weather changes, risk of dehydration, and incidence of severe bradyarrhythmias requiring urgent temporary transvenous cardiac pacing in an elderly population

2013 ◽  
Vol 58 (7) ◽  
pp. 1513-1520 ◽  
Author(s):  
Pietro Palmisano ◽  
Michele Accogli ◽  
Maria Zaccaria ◽  
Alessandra Vergari ◽  
Gabriele De Luca De Masi ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3128
Author(s):  
Thomas Ameloot ◽  
Patrick Van Torre ◽  
Hendrik Rogier

When aiming for the wider deployment of low-power sensor networks, the use of sub-GHz frequency bands shows a lot of promise in terms of robustness and minimal power consumption. Yet, when deploying such sensor networks over larger areas, the link quality can be impacted by a host of factors. Therefore, this contribution demonstrates the performance of several links in a real-world, research-oriented sensor network deployed in a (sub)urban environment. Several link characteristics are presented and analysed, exposing frequent signal deterioration and, more rarely, signal strength enhancement along certain long-distance wireless links. A connection is made between received power levels and seasonal weather changes and events. The irregular link performance presented in this paper is found to be genuinely disruptive when pushing sensor-networks to their limits in terms of range and power use. This work aims to give an indication of the severity of these effects in order to enable the design of truly reliable sensor networks.


2020 ◽  
Vol 172 ◽  
pp. 02005
Author(s):  
Thea Hauge Broholt ◽  
Louise Rævdal Lund Christensen ◽  
Michael Dahl Knudsen ◽  
Rasmus Elbæk Hedegaard ◽  
Steffen Petersen

Several studies have indicated that Model Predictive Control (MPC) of space heating systems can utilize the thermal mass of residential buildings as short-term thermal storage for various demand response purposes. Realization of this potential relies heavily on the accuracy of the model used to represent the thermodynamics of the building. Such models, whether they are grey box or black box, are calibrated using relevant data obtained from initial measurements, and the performance of the calibrated model is validated using data from a subsequent period. However, many studies use validation periods with weather conditions similar to those of the calibration period. Only a few studies investigate whether the calibrated model performs satisfactory when subjected to significantly different conditions. This paper presents data from a simulation-based study on the effect of seasonal weather changes on the performance of a black-box model. The study was conducted using 11 years of Danish weather data (2008-2018). The results indicate that the performance of the black-box model deteriorate as the weather data conditions become increasingly different from those used in the initial model calibration. Further, the results show that calibration in heating season leads to satisfactory model performance through the heating season, but lower performance in transitional seasons (especially spring). Results also show that calibration in February led to highest model performance through heating season, while calibration in March led to satisfactory model performance in the whole heating and fall season.


Author(s):  
Alison G. Vredenburgh ◽  
Kevin Williams

Existing American standards specify criteria for maximum walkway running and cross-slope. Many regions of the United States experience seasonal weather changes. Winter snow can cause frost heave of concrete that can change the slope of concrete sections throughout the year. The current study evaluates the extent of these seasonal changes on walkway slope. The findings indicate that the fluctuation of running and cross-slope makes it impossible to comply year-round with existing standards.


2008 ◽  
Vol 14 (4) ◽  
Author(s):  
Á. Juhász ◽  
L. Tőkei ◽  
Z. Nagy ◽  
K. Hrotkó

Despite of its importance there is no exact information on water use of new scion/rootstock composite trees, which would be needed to optimized irrigation. Our research purpose is to define exact water-demand of different rootstock/scion composite trees, calculating seasonal weather changes and by using the results decrease irrigation costs. The investigations are carried out in Soroksár, at the Experimental Farm of Corvinus University of Budapest in May 2008. From among the investigated trees two are budded onto Prunus mahuleb `Érdi V' seedlings, two on "Korponay' seedlings. The sapflow measurements are carried out using Dynamax Flow 32 equipment with Dynagage trunk sensors. The first daily maximum of sapflow was around 10:00 a.m. (2.5 kghour I), the second maximum was always between 14:00-15:00 p.m. (2 kgday- I). Comparing to the very intensive morning water uptake by 20:00 p.m. the water flow slowly reached the minimal level. Significant differences can be seen on rootstocks: trees on `Korponay' rootstock always showed more intensive sapflow and a higher morning peak than trees on `Árdi V'. But later during the day they have the same run.Based on our results the water quantity transpired only by the trees reached in May 86-104 mm, while the precipitation was only 42.4 mm. This means a 40-60 mm deficit in the orchard, which should have been supplied by irrigation despite of the satisfying horticultural performance of the orchard. In the first half of the month beside the steady vapor pressure deficit the shoot and leaf surface growth could cause the increased sapflow.


1985 ◽  
Vol 14 (6) ◽  
pp. 333-338 ◽  
Author(s):  
ANTHONY MARTIN ◽  
ANTHONY W. NATHAN ◽  
A. JOHN CAMM

Sign in / Sign up

Export Citation Format

Share Document