Concurrent and lagged effects of spring greening on seasonal carbon gain and water loss across the Northern Hemisphere

2020 ◽  
Vol 64 (8) ◽  
pp. 1343-1354
Author(s):  
Jiaxin Jin ◽  
Fengsheng Guo ◽  
Sebastian Sippel ◽  
Qingsong Zhu ◽  
Weifeng Wang ◽  
...  
2019 ◽  
Vol 59 (3) ◽  
pp. 571-584 ◽  
Author(s):  
Christopher D Muir

AbstractStomata regulate the supply of CO2 for photosynthesis and the rate of water loss out of the leaf. The presence of stomata on both leaf surfaces, termed amphistomy, increases photosynthetic rate, is common in plants from high light habitats, and rare otherwise. In this study I use optimality models based on leaf energy budget and photosynthetic models to ask why amphistomy is common in high light habitats. I developed an R package leafoptimizer to solve for stomatal traits that optimally balance carbon gain with water loss in a given environment. The model predicts that amphistomy is common in high light because its marginal effect on carbon gain is greater than in the shade, but only if the costs of amphistomy are also lower under high light than in the shade. More generally, covariation between costs and benefits may explain why stomatal and other traits form discrete phenotypic clusters.


2019 ◽  
Author(s):  
Christopher D. Muir

AbstractStomata regulate the supply of CO2 for photosynthesis and the rate of water loss out of the leaf. The presence of stomata on both leaf surfaces, termed amphistomy, increases photosynthetic rate, is common in plants from high light habitats, and rare otherwise. In this study I use optimality models based on leaf energy budget and photosynthetic models to ask why amphistomy is common in high light habitats. I developed an R package leafoptimizer to solve for stomatal traits that optimally balance carbon gain with water loss in a given environment. The model predicts that amphistomy is common in high light because its marginal effect on carbon gain is greater than in the shade, but only if the costs of amphistomy are also lower under high light than in the shade. More generally, covariation between costs and benefits may explain why stomatal and other traits form discrete phenotypic clusters.


2020 ◽  
Vol 581 ◽  
pp. 124389 ◽  
Author(s):  
Xiangyang Sun ◽  
Genxu Wang ◽  
Mei Huang ◽  
Ruiying Chang ◽  
Zhaoyong Hu ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Juan Yang ◽  
Chunlian Li ◽  
Dexin Kong ◽  
Fangyan Guo ◽  
Hongbin Wei

Stomata are valves on the leaf surface controlling carbon dioxide (CO2) influx for photosynthesis and water loss by transpiration. Thus, plants have to evolve elaborate mechanisms controlling stomatal aperture to allow efficient photosynthesis while avoid excessive water loss. Light is not only the energy source for photosynthesis but also an important signal regulating stomatal movement during dark-to-light transition. Our knowledge concerning blue and red light signaling and light-induced metabolite changes that contribute to stomatal opening are accumulating. This review summarizes recent advances on the signaling components that lie between the perception of blue/red light and activation of the PM H+-ATPases, and on the negative regulation of stomatal opening by red light-activated phyB signaling and ultraviolet (UV-B and UV-A) irradiation. Besides, light-regulated guard cell (GC)-specific metabolic levels, mesophyll-derived sucrose, and CO2 concentration within GCs also play dual roles in stomatal opening. Thus, light-induced stomatal opening is tightly accompanied by brake mechanisms, allowing plants to coordinate carbon gain and water loss. Knowledge on the mechanisms regulating the trade-off between stomatal opening and closure may have potential applications toward generating superior crops with improved water use efficiency (CO2 gain vs. water loss).


1992 ◽  
Vol 40 (5) ◽  
pp. 515 ◽  
Author(s):  
MC Ball ◽  
R Munns

This review explores effects of elevated CO2 concentrations on growth in relation to water use and salt balance of halophytic and non-halophytic species. Under saline conditions, the uptake and distribution of sodium and chloride must be regulated to protect sensitive metabolic sites from salt toxicity. Salt-tolerant species exclude most of the salt from the transpiration stream, but the salt flux from a highly saline soil is still considerable. To maintain internal ion concentrations within physiologically acceptable levels, the salt influx to leaves must match the capacities of leaves for salt storage and/or salt export by either retranslocation or secretion from glands. Hence the balance between carbon gain and the expenditure of water in association with salt uptake is critical to leaf longevity under saline conditions. Indeed, one of the striking features of halophytic vegetation, such as mangroves, is the maintenance of high water use efficiencies coupled with relatively low rates of water loss and growth. These low evaporation rates are further reduced under elevated CO2 conditions. This, with increased growth, leads to even higher water use efficiency. Leaves of plants grown under elevated CO2 conditions might be expected to contain lower salt concentrations than those grown under ambient CO2 if salt uptake is coupled with water uptake. However, salt concentrations in shoot tissues are similar in plants grown under ambient and elevated CO2 conditions despite major differences in water use efficiency. This phenomenon occurs in C3 halophytes and in both C3 and C2 non-halophytes. These results imply shoot/root communication in regulation of the salt balance to adjust to environmental factors affecting the availability of water and ions at the roots (salinity) and those affecting carbon gain in relation to water loss at the leaves (atmospheric concentrations of water vapour and carbon dioxide).


2021 ◽  
Author(s):  
Thomas Buckley

<p>The classical Cowan-Farquhar approach to identifying optimal stomatal conductance treats total water loss as an imposed constraint. That approach can conflict, both physically and economically, with biophysical constraints on water transport. In this talk, I will illustrate these conflicts and discuss alternative approaches -- recently pioneered by Sperry, Wolf, Eller, and their colleagues -- that aim to penalize excessive transpiration by explicitly incorporating hydraulic risk, using hydraulic vulnerability curves (VCs). In this context, I will present preliminary efforts to determine whether VCs accurately reflect the actual probabilistic risk posed by low water potentials (that is, the expected reduction in total carbon gain), as well as an extension to the recent analytical solution by Eller et al.</p>


2007 ◽  
Vol 34 (3) ◽  
pp. 172 ◽  
Author(s):  
Mairgareth A. Caird ◽  
James H. Richards ◽  
Theodore C. Hsiao

Incomplete stomatal closure at night can result in substantial water loss at times when photosynthetic carbon gain is not occurring in C3 and C4 plant species. To investigate the magnitude of nighttime water loss for a crop species in the field, measurements of nighttime water loss by tomato (Lycopersicon esculentum Mill. cv. Heinz 8892) were made by three methods: a field-scale lysimeter and two leaf-level instruments, an automated viscous flow porometer and a portable photosynthesis system. The portable photosynthesis system indicated nighttime transpiration of 10% of maximal daytime transpiration and the viscous flow porometer demonstrated partially open stomata. Integrated crop water loss during the dark, non-photosynthetic hours measured on the lysimeter was 3–10.8% of total daily water loss. In the glasshouse, a survey of closely related wild and cultivated tomato species showed that under ambient conditions nighttime transpiration varied within and among species and was 8–33% of maximal daytime transpiration. Implications of such a substantial fraction of total daily crop water use occurring during the night are significant in agronomic, environmental, and economic terms. Further, variation within and among species in nighttime water loss has implications for breeding to improve crop water use efficiency.


2019 ◽  
Vol 25 (6) ◽  
pp. 2174-2188 ◽  
Author(s):  
Jie Peng ◽  
Chaoyang Wu ◽  
Xiaoyang Zhang ◽  
Xiaoyue Wang ◽  
Alemu Gonsamo

1980 ◽  
Vol 7 (3) ◽  
pp. 315 ◽  
Author(s):  
GD Farquhar ◽  
ED Schulze ◽  
M Kuppers

Intact leaves of N. glauca and C. avellana were exposed to a range of humidities and their gas exchange monitored. Rates of transpiration and assimilation of carbon dioxide, and their sensitivities to changes in total conductance (leaf and boundary layer) were determined. The ratio of these sensitivities, δE/δA, remained substantially constant over the range of humidities. The results represent the first experimental support for a recent hypothesis that stomata vary their apertures in such a manner as to keep δE/δA constant, which optimizes carbon gain with respect to water loss.


Sign in / Sign up

Export Citation Format

Share Document