light signaling
Recently Published Documents


TOTAL DOCUMENTS

283
(FIVE YEARS 73)

H-INDEX

45
(FIVE YEARS 5)

2022 ◽  
Vol 23 (2) ◽  
pp. 687
Author(s):  
Dandan Lu ◽  
Yi Zhang ◽  
Aihong Zhang ◽  
Congming Lu

Light is essential for photosynthesis but light levels that exceed an organism’s assimilation capacity can cause serious damage or even cell death. Plants and microalgae have developed photoprotective mechanisms collectively referred to as non-photochemical quenching to minimize such potential damage. One such mechanism is energy-dependent quenching (qE), which dissipates excess light energy as heat. Over the last 30 years, much has been learned about the molecular mechanism of qE in green algae and plants. However, the steps between light perception and qE represented a gap in our knowledge until the recent identification of light-signaling pathways that function in these processes in the green alga Chlamydomonas reinhardtii. In this review, we summarize the high light and UV-mediated signaling pathways for qE in Chlamydomonas. We discuss key questions remaining about the pathway from light perception to photoprotective gene expression in Chlamydomonas. We detail possible differences between green algae and plants in light-signaling mechanisms for qE and emphasize the importance of research on light-signaling mechanisms for qE in plants.


2022 ◽  
Vol 12 ◽  
Author(s):  
Victor P. Bulgakov ◽  
Olga G. Koren

It is generally accepted that plants use the complex signaling system regulated by light and abscisic acid (ABA) signaling components to optimize growth and development in different situations. The role of ABA–light interactions is evident in the coupling of stress defense reactions with seed germination and root development, maintaining of stem cell identity and stem cell specification, stem elongation and leaf development, flowering and fruit formation, senescence, and shade avoidance. All these processes are regulated jointly by the ABA–light signaling system. Although a lot of work has been devoted to ABA–light signal interactions, there is still no systematic description of central signaling components and protein modules, which jointly regulate plant development. New data have emerged to promote understanding of how ABA and light signals are integrated at the molecular level, representing an extensively growing area of research. This work is intended to fill existing gaps by using literature data combined with bioinformatics analysis.


2021 ◽  
Author(s):  
Feng Wang ◽  
Xiujie Wang ◽  
Ying Zhang ◽  
Jiarong Yan ◽  
Golam Jalal Ahammed ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yurong Xie ◽  
Mengdi Ma ◽  
Yang Liu ◽  
Baobao Wang ◽  
Hongbin Wei ◽  
...  

Leaf senescence is the terminal stage of leaf development. Both light and the plant hormone ethylene play important roles in regulating leaf senescence. However, how they coordinately regulate leaf senescence during leaf development remains largely unclear. In this study, we show that FHY3 and FAR1, two homologous proteins essential for phytochrome A-mediated light signaling, physically interact with and repress the DNA binding activity of EIN3 (a key transcription factor essential for ethylene signaling) and PIF5 (a bHLH transcription factor negatively regulating light signaling), and interfere with their DNA binding to the promoter of ORE1, which encodes a key NAC transcription factor promoting leaf senescence. In addition, we show that FHY3, PIF5, and EIN3 form a tri-protein complex(es) and that they coordinately regulate the progression of leaf senescence. We show that during aging or under dark conditions, accumulation of FHY3 protein decreases, thus lifting its repression on DNA binding of EIN3 and PIF5, leading to the increase of ORE1 expression and onset of leaf senescence. Our combined results suggest that FHY3 and FAR1 act in an age gating mechanism to prevent precocious leaf senescence by integrating light and ethylene signaling with developmental aging.


2021 ◽  
Vol 2 ◽  
Author(s):  
Ziwei Liu ◽  
Tiantian Zhu ◽  
Chen Zhang ◽  
Gengxin Zhang ◽  
Shanshan Zhao

For Beyond 5G/6G system, satellite communication systems become an effective component of the space and terrestrial integrated network. Among typical applications, massive Machine Type of Communication (mMTC) is a promising and challenging application. The demands of low power consumption and light signaling make random access methods as the potential solution. Up to now, contention resolution-based ALOHA methods, such as contention resolution diversity slotted ALOHA (CRDSA), improve the throughput significantly. However, its throughput will meet the inflection point soon with the normalized load increasing since collisionless packets are hardly existing. In fact, the diversity of transmitting packets is not utilized totally. In this paper, an improved random access method, named coherent CRDSA method (C-CRDSA), is proposed. It accumulates replicated packets coherently at receiver and further improve the throughput over CRDSA. Detailed derivations and simulations are given. Simulation results corroborate the effectiveness of the proposed method.


2021 ◽  
Vol 22 (19) ◽  
pp. 10772
Author(s):  
Chang Ho Kang ◽  
Eun Seon Lee ◽  
Ganesh M. Nawkar ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
...  

Interaction between light signaling and stress response has been recently reported in plants. Here, we investigated the role of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a key regulator of light signaling, in endoplasmic reticulum (ER) stress response in Arabidopsis. The cop1-4 mutant Arabidopsis plants were highly sensitive to ER stress induced by treatment with tunicarmycin (Tm). Interestingly, the abundance of nuclear-localized COP1 increased under ER stress conditions. Complementation of cop1-4 mutant plants with the wild-type or variant types of COP1 revealed that the nuclear localization and dimerization of COP1 are essential for its function in plant ER stress response. Moreover, the protein amount of ELONGATED HYPOCOTYL 5 (HY5), which inhibits bZIP28 to activate the unfolded protein response (UPR), decreased under ER stress conditions in a COP1-dependent manner. Accordingly, the binding of bZIP28 to the BIP3 promoter was reduced in cop1-4 plants and increased in hy5 plants compared with the wild type. Furthermore, introduction of the hy5 mutant locus into the cop1-4 mutant background rescued its ER stress-sensitive phenotype. Altogether, our results suggest that COP1, a negative regulator of light signaling, positively controls ER stress response by partially degrading HY5 in the nucleus.


Author(s):  
Soledad Perez Santangelo ◽  
Nathanael Napier ◽  
Fran Robson ◽  
James Weller ◽  
Donna Bond ◽  
...  

Plants use seasonal cues to initiate flowering at an appropriate time of year to ensure optimal reproductive success. The circadian clock integrates these daily and seasonal cues with internal cues to initiate flowering. The molecular pathways that control the sensitivity of flowering to photoperiod (daylength) are well described in the model plant Arabidopsis. However, much less is known in crop species, such as the legume family species. Here we performed a flowering time screen of a TILLING population of Medicago truncatula and found a line with late-flowering and altered light-sensing phenotypes. Using RNA-sequencing, we identified a nonsense mutation in the Phytochromobilin Synthase (MtPΦBS) gene, which encodes an enzyme that carries out the final step in the biosynthesis of the chromophore required for phytochrome (PHY) activity. The analysis of the circadian clock in the MtpΦbs mutant revealed a shorter circadian period, which was shared with the phyA mutant. The MtpΦbs and MtphyA mutants showed downregulation of FT floral regulators MtFTa1, MtFTb1/b2 and a shift in phase for morning and night core clock genes. Our findings show that PHYA is necessary to synchronize the circadian clock and integration of light signaling to promote expression of the MtFT genes to precisely time flowering.


2021 ◽  
Vol 12 ◽  
Author(s):  
Henning Frerigmann ◽  
Ute Hoecker ◽  
Tamara Gigolashvili

The biosynthesis of defensive secondary metabolites, such as glucosinolates (GSLs), is a costly process, which requires nutrients, ATP, and reduction equivalents, and, therefore, needs well-orchestrated machinery while coordinating defense and growth. We discovered that the key repressor of light signaling, the CONSTITUTIVE PHOTOMORPHOGENIC 1/SUPPRESSOR OF PHYTOCHROME A-105 (COP1/SPA) complex, is a crucial component of GSL biosynthesis regulation. Various mutants in this COP1/SPA complex exhibited a strongly reduced level of GSL and a low expression of jasmonate (JA)-dependent genes. Furthermore, cop1, which is known to accumulate DELLA proteins in the dark, shows reduced gibberellin (GA) and JA signaling, thereby phenocopying other DELLA-accumulating mutants. This phenotype can be complemented by a dominant gain-of-function allele of MYC3 and by crossing with a mutant having low DELLA protein levels. Hence, SPA1 interacts with DELLA proteins in a yeast two-hybrid screen, whereas high levels of DELLA inhibit MYC function and suppress JA signaling. DELLA accumulation leads to reduced synthesis of GSL and inhibited growth. Thus, the COP1/SPA-mediated degradation of DELLA not only affects growth but also regulates the biosynthesis of GSLs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shenqi Wang ◽  
Zimin Zhou ◽  
Rini Rahiman ◽  
Grace Sheen Yee Lee ◽  
Yuan Kai Yeo ◽  
...  

AbstractDevelopmental outcomes are shaped by the interplay between intrinsic and external factors. The production of stomata—essential pores for gas exchange in plants—is extremely plastic and offers an excellent system to study this interplay at the cell lineage level. For plants, light is a key external cue, and it promotes stomatal development and the accumulation of the master stomatal regulator SPEECHLESS (SPCH). However, how light signals are relayed to influence SPCH remains unknown. Here, we show that the light-regulated transcription factor ELONGATED HYPOCOTYL 5 (HY5), a critical regulator for photomorphogenic growth, is present in inner mesophyll cells and directly binds and activates STOMAGEN. STOMAGEN, the mesophyll-derived secreted peptide, in turn stabilizes SPCH in the epidermis, leading to enhanced stomatal production. Our work identifies a molecular link between light signaling and stomatal development that spans two tissue layers and highlights how an environmental signaling factor may coordinate growth across tissue types.


Sign in / Sign up

Export Citation Format

Share Document