total conductance
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 4)

H-INDEX

11
(FIVE YEARS 1)

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Erika Kutasy ◽  
Erika Buday-Bódi ◽  
István Csaba Virág ◽  
Fanni Forgács ◽  
Anteneh Agezew Melash ◽  
...  

A field experiment was carried out in the 2020–2021 growing season, aiming at investigating the abiotic stress tolerance of oat (Avena sativa L.) with silicon and sulphur foliar fertilization treatments and monitoring the effect of treatments on the physiology, production and stress tolerance of winter oat varieties. In the Hungarian national list of varieties, six winter oat varieties were registered in 2020, and all of the registered varieties were sown in a small plot field experiment in Debrecen, Hungary. The drought tolerance of the oat could be tested, because June was very dry in 2021; the rainfall that month totaled 6 mm only despite a 30-year average of 66.5 mm, and the average temperature for the month was 3.2 °C higher than the 30-year average. Foliar application of silicon and sulphur fertilizers caused differences in the photosynthesis rate, total conductance to CO2, transpiration, water use efficiency, leaf area, chlorophyll content, carotenoid content, thousand kernel weight (TKW) and yield of winter oat. The application of silicon significantly increased the photosynthesis rate (16.8–149.3%), transpiration (5.4–5.6%), air–leaf temperature difference (16.2–43.2%), chlorophyll (1.0%) and carotenoid (2.5%) content. The yield increased by 10.2% (Si) and 8.0% (Si plus S), and the TKW by 3.3% (Si) and 5.0% (Si plus S), compared to the control plots. The plants in the control plots assimilated less CO2 while transpiring 1 m3 water more than in the Si, S or Si plus S fertilized plots. The effect of the silicon varied from 9.0 to 195.4% in water use efficiency (WUE) in the three development stages (BBCH52, BBCH65 and BBCH77). A lower leaf area index was measured in the foliar fertilized plots; even so, the yield was higher, compared to that from the control plots. Great variation was found in response to the foliar Si and S fertilization among winter oat varieties—in WUE, 2.0–43.1%; in total conductance to CO2, 4.9–37.3%; in leaf area, 1.6–34.1%. Despite the droughty weather of June, the winter oat varieties produced a high yield. The highest yield was in ‘GK Arany’ (7015.7 kg ha−1), which was 23.8% more than the lowest yield (‘Mv Kincsem’, 5665.6 kg ha −1). In the average of the treatments, the TKW increased from 23.9 to 33.9 g (41.8%). ‘Mv Hópehely’ had the highest TKW. Our results provide information about the abiotic stress tolerance of winter oat, which, besides being a good model plant because of its drought resistance, is an important human food and animal feed.


Acta Naturae ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 89-98
Author(s):  
D. K. Chistyulin ◽  
O. D. Novikova ◽  
E. A. Zelepuga ◽  
V. A. Khomenko ◽  
G. N. Likhatskaya ◽  
...  

Electrophysiological experiments on bilayer lipid membranes showed that the isolated outer membrane major porin of Yersinia ruckeri (YrOmpF) exhibits activity typical of porins from Gram-negative bacteria, forming channels with a mean conductance of 230 pS (in 0.1 M KCl) and slight asymmetry with respect to the applied voltage. Under acidic conditions (up to pH = 3.0), there was no significant decrease in the total conductance of the YrOmpF channel reconstituted into the bilayer. The studied channel significantly differed from the porins of other bacteria by high values of its critical closing potential (Vc): Vc = 232 mV at pH = 7.0 and Vc = 164 mV at pH = 5.0. A theoretical model of the YrOmpF spatial structure was used for the analysis of the charge distribution in the mouth and inside the channel to explain these properties and quantitatively assess the bonds between the amino acid residues in the L3 loop and on the inner wall of the barrel. The parameters of YrOmpF were compared with those of the classical OmpF porin from E. coli. The results of electrophysiological experiments and theoretical analysis are discussed in terms of the mechanism for voltage-dependent closing of porin channels.


2019 ◽  
Vol 39 (6) ◽  
pp. 1019-1031 ◽  
Author(s):  
Ruihua Pan ◽  
Melvin T Tyree

Abstract Hydraulic safety and efficiency have become the central concept of the interpretation of the structure and function of vessels and their interconnections. Plants form an appropriate xylem network structure to maintain a balance of hydraulic safety vs efficiency. The term ‘tracheid bridge’ is used to describe a possible pathway of water transport between neighboring vessels via tracheids, and this pathway could also provide increased safety against embolisms. However, the only physiological study of such a structure thus far has been in Hippophae rhamnoides Linn. To test the function of tracheid bridges, this research examined four species that have relatively long and solitary vessels, which are two of the criteria for efficient tracheid bridges. Tracheids contributed less than 2.2% of the total conductance of the vessels in these species, but in theory, tracheids could serve as very efficient transport connector pathways that may or may not make direct vessel-to-vessel contact via pit fields between adjacent vessels. In some species, tracheid bridges may represent the dominant pathway for water flow between vessels, whereas in other species, tracheid bridges may be sub-dominant or virtually nil. Broader searches of woody taxa are needed to reveal the functional importance of tracheid bridges in vascular plants.


2018 ◽  
Vol 119 (3) ◽  
pp. 1222-1234 ◽  
Author(s):  
Alessio Franci ◽  
Guillaume Drion ◽  
Rodolphe Sepulchre

We highlight that the robustness and tunability of a bursting model critically rely on currents that provide slow positive feedback to the membrane potential. Such currents have the ability to make the total conductance of the circuit negative in a timescale that is termed “slow” because it is intermediate between the fast timescale of the spike upstroke and the ultraslow timescale of even slower adaptation currents. We discuss how such currents can be assessed either in voltage-clamp experiments or in computational models. We show that, while frequent in the literature, mathematical and computational models of bursting that lack the slow negative conductance are fragile and rigid. Our results suggest that modeling the slow negative conductance of cellular models is important when studying the neuromodulation of rhythmic circuits at any broader scale. NEW & NOTEWORTHY Nervous system functions rely on the modulation of neuronal activity between different rhythmic patterns. The mechanisms of this modulation are still poorly understood. Using computational modeling, we show the critical role of currents that provide slow negative conductance, distinct from the fast negative conductance necessary for spike generation. The significance of the slow negative conductance for neuromodulation is often overlooked, leading to computational models that are rigid and fragile.


2014 ◽  
Vol 57 (6) ◽  
pp. 707-716 ◽  
Author(s):  
A. V. Voitsekhovskii ◽  
S. N. Nesmelov ◽  
S. М. Dzyadukh ◽  
V. V. Vasil’ev ◽  
V. S. Varavin ◽  
...  

2013 ◽  
Vol 305 (7) ◽  
pp. E805-E817 ◽  
Author(s):  
Jianhua Ren ◽  
Arthur Sherman ◽  
Richard Bertram ◽  
Paulette B. Goforth ◽  
Craig S. Nunemaker ◽  
...  

We used the patch clamp technique in situ to test the hypothesis that slow oscillations in metabolism mediate slow electrical oscillations in mouse pancreatic islets by causing oscillations in KATP channel activity. Total conductance was measured over the course of slow bursting oscillations in surface β-cells of islets exposed to 11.1 mM glucose by either switching from current clamp to voltage clamp at different phases of the bursting cycle or by clamping the cells to −60 mV and running two-second voltage ramps from −120 to −50 mV every 20 s. The membrane conductance, calculated from the slopes of the ramp current-voltage curves, oscillated and was larger during the silent phase than during the active phase of the burst. The ramp conductance was sensitive to diazoxide, and the oscillatory component was reduced by sulfonylureas or by lowering extracellular glucose to 2.8 mM, suggesting that the oscillatory total conductance is due to oscillatory KATP channel conductance. We demonstrate that these results are consistent with the Dual Oscillator model, in which glycolytic oscillations drive slow electrical bursting, but not with other models in which metabolic oscillations are secondary to calcium oscillations. The simulations also confirm that oscillations in membrane conductance can be well estimated from measurements of slope conductance and distinguished from gap junction conductance. Furthermore, the oscillatory conductance was blocked by tolbutamide in isolated β-cells. The data, combined with insights from mathematical models, support a mechanism of slow (∼5 min) bursting driven by oscillations in metabolism, rather than by oscillations in the intracellular free calcium concentration.


2013 ◽  
Vol 110 (4) ◽  
pp. 1021-1034 ◽  
Author(s):  
Rune W. Berg ◽  
Susanne Ditlevsen

When recording the membrane potential, V, of a neuron it is desirable to be able to extract the synaptic input. Critically, the synaptic input is stochastic and nonreproducible so one is therefore often restricted to single-trial data. Here, we introduce means of estimating the inhibition and excitation and their confidence limits from single sweep trials. The estimates are based on the mean membrane potential, V̄, and the membrane time constant, τ. The time constant provides the total conductance ( G = capacitance/τ) and is extracted from the autocorrelation of V. The synaptic conductances can then be inferred from V̄ when approximating the neuron as a single compartment. We further employ a stochastic model to establish limits of confidence. The method is verified on models and experimental data, where the synaptic input is manipulated pharmacologically or estimated by an alternative method. The method gives best results if the synaptic input is large compared with other conductances, the intrinsic conductances have little or no time dependence or are comparably small, the ligand-gated kinetics is faster than the membrane time constant, and the majority of synaptic contacts are electrotonically close to soma (recording site). Although our data are in current clamp, the method also works in V-clamp recordings, with some minor adaptations. All custom made procedures are provided in Matlab.


Paleobiology ◽  
10.1666/11042 ◽  
2013 ◽  
Vol 39 (2) ◽  
pp. 278-296 ◽  
Author(s):  
David J. Varricchio ◽  
Frankie D. Jackson ◽  
Robert A. Jackson ◽  
Darla K. Zelenitsky

Using tangential thin sections, we examined variation in porosity and water vapor conductance across two eggs of Troodon formosus, a small (∼50 kg) theropod dinosaur from the North American Upper Cretaceous, testing two hypotheses of egg incubation: (1) full burial within sediments or vegetation and (2) partial burial with exposed upper egg portions. We divided and sampled the eggs in five zones, 1 through 5 from blunt top to more pointed bottom. A geometric model composed of a hemisphere, cone, and paraboloid was used to estimate total and zonal volumes and surface areas. The 138 × 67 mm idealized Troodon egg has a volume, surface area, and mass of 296.4 cm3, 239.23 cm2, and 314.2 g, respectively. Zonal surface areas and volumes highlight the strongly asymmetric and elongate form of the Troodon egg. Geometric modeling provides better estimates of volume and surface area where egg shape diverges markedly from that of a typical bird egg. Porosity varies significantly across both Troodon eggs, with zones 2 and 3 having the largest pores and a majority (70–78%) of total conductance, whereas zone 5 has very low conductance. Total water vapor conductance in the two eggs are 31.85 and 40.62 mg H2O day− Torr−, values 76% and 97% of those predicted for an avian egg of similar size. Low total conductance compares favorably to values in extant birds and non-avian reptiles that incubate in open nests, arguing against full burial incubation. Together with nesting site evidence, low conductance values favor partial burial and incubation by a Troodon adult. Asymmetric egg shape concentrates volume, surface area, and conductance near or at the point of subaerial exposure. Among non-avian dinosaurs, the eggs of Troodon and troodontids are most similar to those of modern birds in having an asymmetric shape, low porosity, no ornamentation, and three structural eggshell layers.


2012 ◽  
Vol 139 (5) ◽  
pp. 333-348 ◽  
Author(s):  
Anmar Khadra ◽  
Zonghe Yan ◽  
Claudio Coddou ◽  
Melanija Tomić ◽  
Arthur Sherman ◽  
...  

Adenosine triphosphate (ATP)-gated P2X2 receptors exhibit two opposite activation-dependent changes, pore dilation and pore closing (desensitization), through a process that is incompletely understood. To address this issue and to clarify the roles of calcium and the C-terminal domain in gating, we combined biophysical and mathematical approaches using two splice forms of receptors: the full-size form (P2X2aR) and the shorter form missing 69 residues in the C-terminal domain (P2X2bR). Both receptors developed conductivity for N-methyl-d-glucamine within 2–6 s of ATP application. However, pore dilation was accompanied with a decrease rather than an increase in the total conductance, which temporally coincided with rapid and partial desensitization. During sustained agonist application, receptors continued to desensitize in calcium-independent and calcium-dependent modes. Calcium-independent desensitization was more pronounced in P2X2bR, and calcium-dependent desensitization was more pronounced in P2X2aR. In whole cell recording, we also observed use-dependent facilitation of desensitization of both receptors. Such behavior was accounted for by a 16-state Markov kinetic model describing ATP binding/unbinding and activation/desensitization. The model assumes that naive receptors open when two to three ATP molecules bind and undergo calcium-independent desensitization, causing a decrease in the total conductance, or pore dilation, causing a shift in the reversal potential. In calcium-containing media, receptor desensitization is facilitated and the use-dependent desensitization can be modeled by a calcium-dependent toggle switch. The experiments and the model together provide a rationale for the lack of sustained current growth in dilating P2X2Rs and show that receptors in the dilated state can also desensitize in the presence of calcium.


Sign in / Sign up

Export Citation Format

Share Document