Prediction model for compressive strength of basic concrete mixture using artificial neural networks

2014 ◽  
Vol 26 (5) ◽  
pp. 1005-1024 ◽  
Author(s):  
Srđan Kostić ◽  
Dejan Vasović
2015 ◽  
Vol 781 ◽  
pp. 628-631 ◽  
Author(s):  
Rati Wongsathan ◽  
Issaravuth Seedadan ◽  
Metawat Kavilkrue

A mathematical prediction model has been developed in order to detect particles with a diameter of 10 micrometers or less (PM-10) that are responsible for adverse health effects because of their ability to cause serious respiratory conditions in areas of high pollution such as Chiang Mai City moat area. The prediction model is based on 3 types of Artificial Neural Networks (ANNs), including Multi-layer perceptron (MLP-NN), Radial basis function (RBF-NN), and hybrid of RBF and Genetic algorithm (RBF-NN-GA). The model uses 8 input variables to predict PM-10, consisting of 4 air pollution substances ( CO, O3, NO2 and SO2) and 4 meteorological variables related PM-10 (wind speed, temperature, atmospheric pressure and relative humidity). These 3 types of ANN have proved efficient instrument in predicting the PM-10. However, the performance of RBF-NN was superior in comparison with MLP-NN and RBF-NN-GA respectively.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 44
Author(s):  
Fernando A. N. Silva ◽  
João M. P. Q. Delgado ◽  
Rosely S. Cavalcanti ◽  
António C. Azevedo ◽  
Ana S. Guimarães ◽  
...  

The work presents the results of an experimental campaign carried out on concrete elements in order to investigate the potential of using artificial neural networks (ANNs) to estimate the compressive strength based on relevant parameters, such as the water–cement ratio, aggregate–cement ratio, age of testing, and percentage cement/metakaolin ratios (5% and 10%). We prepared 162 cylindrical concrete specimens with dimensions of 10 cm in diameter and 20 cm in height and 27 prismatic specimens with cross sections measuring 25 and 50 cm in length, with 9 different concrete mixture proportions. A longitudinal transducer with a frequency of 54 kHz was used to measure the ultrasonic velocities. An ANN model was developed, different ANN configurations were tested and compared to identify the best ANN model. Using this model, it was possible to assess the contribution of each input variable to the compressive strength of the tested concretes. The results indicate an excellent performance of the ANN model developed to predict compressive strength from the input parameters studied, with an average error less than 5%. Together, the water–cement ratio and the percentage of metakaolin were shown to be the most influential factors for the compressive strength value predicted by the developed ANN model.


2021 ◽  
Author(s):  
Lathesparan Ramachandran ◽  
Rm Kapila Tharanga Rathnayaka ◽  
Wiraj Udara Wickramaarachchi

2020 ◽  
Vol 32 (19) ◽  
pp. 15669-15669
Author(s):  
Ali Nazari ◽  
Hadi Hajiallahyari ◽  
Ali Rahimi ◽  
Hamid Khanmohammadi ◽  
Mohammad Amini

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1396 ◽  
Author(s):  
Hubert Anysz ◽  
Piotr Narloch

Cement stabilized rammed earth (CRSE) is a sustainable, low energy consuming construction technique which utilizes inorganic soil, usually taken directly from the construction site, with a small addition of Portland cement as a building material. This technology is gaining popularity in various regions of the world, however, there are no uniform standards for designing the composition of the CSRE mixture. The main goal of this article is to propose a complete algorithm for designing CSRE with the use of subsoil obtained from the construction site. The article’s authors propose the use of artificial neural networks (ANN) to determine the proper proportions of soil, cement, and water in a CSRE mixture that provides sufficient compressive strength. The secondary purpose of the paper (supporting the main goal) is to prove that artificial neural networks are suitable for designing CSRE mixtures. For this purpose, compressive strength was tested on several hundred CSRE samples, with different particle sizes, cement content and water additions. The input database was large enough to enable the artificial neural network to produce predictions of high accuracy. The developed algorithm allows us to determine, using relatively simple soil tests, the composition of the mixture ensuring compressive strength at a level that allows the use of this material in construction.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chengyao Liang ◽  
Chunxiang Qian ◽  
Huaicheng Chen ◽  
Wence Kang

Engineering structure degradation in the marine environment, especially the tidal zone and splash zone, is serious. The compressive strength of concrete exposed to the wet-dry cycle is investigated in this study. Several significant influencing factors of compressive strength of concrete in the wet-dry environment are selected. Then, the database of compressive strength influencing factors is established from vast literature after a statistical analysis of those data. Backpropagation artificial neural networks (BP-ANNs) are applied to establish a multifactorial model to predict the compressive strength of concrete in the wet-dry exposure environment. Furthermore, experiments are done to verify the generalization of the BP-ANN model. This model turns out to give a high accuracy and statistical analysis to confirm some rules in marine concrete mix and exposure. In general, this model is practical to predict the concrete mechanical performance.


Sign in / Sign up

Export Citation Format

Share Document