Robust finite-time $$H_{\infty }$$ congestion control for a class of AQM network systems

Author(s):  
Kun Wang ◽  
Xiaoping Liu ◽  
Yuanwei Jing
2018 ◽  
Vol 210 ◽  
pp. 03005 ◽  
Author(s):  
Yuanwei Jing ◽  
Zanhua Li ◽  
Georgi Dimirovski

The congestion control problem for TCP network systems with UDP flows is considered. A nonlinear TCP network model with strict-feedback structure is established. The unknown UDP flow is considered as the disturbance to the system, and the maximum UDP flow is calculated by using the minimax approach. And then, a congestion control algorithm is proposed by using backstepping approach. Further, a state-feedback congestion controller is presented to make the TCP networks asymptotically stable. The simulation results show the superiority and feasibility of the proposed method.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Weimin Zheng ◽  
Yanxin Li ◽  
Xiaowen Jing ◽  
Shangkun Liu

The issue of adaptive practical finite-time (FT) congestion control for the transmission control protocol/active queue management (TCP/AQM) network with unknown hysteresis and external disturbance is considered in this paper. A finite-time congestion controller is designed by the backstepping technique and the adaptive neural control method. This controller guarantees that the queue length tracks the desired queue in finite-time, and it is semiglobally practical finite-time stable (SGPFS) for all the signals of the closed-loop system. At last, the simulation results show that the control strategy is effective.


2019 ◽  
Vol 351 ◽  
pp. 26-32 ◽  
Author(s):  
Yang Liu ◽  
Yuanwei Jing ◽  
Xiangyong Chen

Author(s):  
Wassim M. Haddad ◽  
Sergey G. Nersesov

Modern complex large-scale dynamical systems exist in virtually every aspect of science and engineering, and are associated with a wide variety of physical, technological, environmental, and social phenomena, including aerospace, power, communications, and network systems, to name just a few. This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, and presents the most complete treatment on vector Lyapunov function methods, vector dissipativity theory, and decentralized control architectures. Large-scale dynamical systems are strongly interconnected and consist of interacting subsystems exchanging matter, energy, or information with the environment. The sheer size, or dimensionality, of these systems necessitates decentralized analysis and control system synthesis methods for their analysis and design. Written in a theorem-proof format with examples to illustrate new concepts, this book addresses continuous-time, discrete-time, and hybrid large-scale systems. It develops finite-time stability and finite-time decentralized stabilization, thermodynamic modeling, maximum entropy control, and energy-based decentralized control. This book will interest applied mathematicians, dynamical systems theorists, control theorists, and engineers, and anyone seeking a fundamental and comprehensive understanding of large-scale interconnected dynamical systems and control.


Sign in / Sign up

Export Citation Format

Share Document