Interactive visual computer vision analysis based on artificial intelligence technology in intelligent education

Author(s):  
Yan Hu ◽  
QiangQiang Li ◽  
Shih-wei Hsu
Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7367
Author(s):  
Gihun Lee ◽  
Mihui Kim

Recently, artificial intelligence has been successfully used in fields, such as computer vision, voice, and big data analysis. However, various problems, such as security, privacy, and ethics, also occur owing to the development of artificial intelligence. One such problem are deepfakes. Deepfake is a compound word for deep learning and fake. It refers to a fake video created using artificial intelligence technology or the production process itself. Deepfakes can be exploited for political abuse, pornography, and fake information. This paper proposes a method to determine integrity by analyzing the computer vision features of digital content. The proposed method extracts the rate of change in the computer vision features of adjacent frames and then checks whether the video is manipulated. The test demonstrated the highest detection rate of 97% compared to the existing method or machine learning method. It also maintained the highest detection rate of 96%, even for the test that manipulates the matrix of the image to avoid the convolutional neural network detection method.


2020 ◽  
Vol 96 (3s) ◽  
pp. 585-588
Author(s):  
С.Е. Фролова ◽  
Е.С. Янакова

Предлагаются методы построения платформ прототипирования высокопроизводительных систем на кристалле для задач искусственного интеллекта. Изложены требования к платформам подобного класса и принципы изменения проекта СнК для имплементации в прототип. Рассматриваются методы отладки проектов на платформе прототипирования. Приведены результаты работ алгоритмов компьютерного зрения с использованием нейросетевых технологий на FPGA-прототипе семантических ядер ELcore. Methods have been proposed for building prototyping platforms for high-performance systems-on-chip for artificial intelligence tasks. The requirements for platforms of this class and the principles for changing the design of the SoC for implementation in the prototype have been described as well as methods of debugging projects on the prototyping platform. The results of the work of computer vision algorithms using neural network technologies on the FPGA prototype of the ELcore semantic cores have been presented.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1128
Author(s):  
Chern-Sheng Lin ◽  
Yu-Ching Pan ◽  
Yu-Xin Kuo ◽  
Ching-Kun Chen ◽  
Chuen-Lin Tien

In this study, the machine vision and artificial intelligence algorithms were used to rapidly check the degree of cooking of foods and avoid the over-cooking of foods. Using a smart induction cooker for heating, the image processing program automatically recognizes the color of the food before and after cooking. The new cooking parameters were used to identify the cooking conditions of the food when it is undercooked, cooked, and overcooked. In the research, the camera was used in combination with the software for development, and the real-time image processing technology was used to obtain the information of the color of the food, and through calculation parameters, the cooking status of the food was monitored. In the second year, using the color space conversion, a novel algorithm, and artificial intelligence, the foreground segmentation was used to separate the vegetables from the background, and the cooking ripeness, cooking unevenness, oil glossiness, and sauce absorption were calculated. The image color difference and the distribution were used to judge the cooking conditions of the food, so that the cooking system can identify whether or not to adopt partial tumbling, or to end a cooking operation. A novel artificial intelligence algorithm is used in the relative field, and the error rate can be reduced to 3%. This work will significantly help researchers working in the advanced cooking devices.


Sign in / Sign up

Export Citation Format

Share Document