A novel ensemble learning approach for hourly global solar radiation forecasting

Author(s):  
Mawloud Guermoui ◽  
Said Benkaciali ◽  
Kacem Gairaa ◽  
Kada Bouchouicha ◽  
Tayeb Boulmaiz ◽  
...  
Solar Energy ◽  
2018 ◽  
Vol 163 ◽  
pp. 189-199 ◽  
Author(s):  
Shaolong Sun ◽  
Shouyang Wang ◽  
Guowei Zhang ◽  
Jiali Zheng

Author(s):  
Ardan Hüseyin EŞLİK ◽  
Emre AKARSLAN ◽  
Fatih Onur HOCAOĞLU

2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Yao Dong ◽  
He Jiang

In recent decades, the integration of solar energy sources has gradually become the main challenge for global energy consumption. Therefore, it is essential to predict global solar radiation in an accurate and efficient way when estimating outputs of the solar system. Inaccurate predictions either cause load overestimation that results in increased cost or failure to gather adequate supplies. However, accurate forecasting is a challenging task because solar resources are intermittent and uncontrollable. To tackle this difficulty, several machine learning models have been established; however, the forecasting outcomes of these models are not sufficiently accurate. Therefore, in this study, we investigate ensemble learning with square root regularization and intelligent optimization to forecast hourly global solar radiation. The main structure of the proposed method is constructed based on ensemble learning with a random subspace (RS) method that divides the original data into several covariate subspaces. A novel covariate-selection method called square root smoothly clipped absolute deviation (SRSCAD) is proposed and is applied to each subspace with efficient extraction of relevant covariates. To combine the forecasts obtained using RS and SRSCAD, a firefly algorithm (FA) is used to estimate the weights assigned to individual forecasts. To handle the complexity of the proposed ensemble system, a simple and efficient algorithm is derived based on a thresholding rule and accelerated gradient method. To illustrate the validity and effectiveness of the proposed method, global solar radiation datasets of eight locations of Xinjiang province in China are considered. The experimental results show that the proposed RS-SRSCAD-FA achieves the best performances with a mean absolute percentage error, root-mean-square error, Theil inequality coefficient, and correlation coefficient of 0.066, 20.21 W/m2, 0.016, 3.40 s, and 0.98 in site 1, respectively. For the other seven datasets, RS-SRSCAD-FA still outperforms other approaches. Finally, a nonparametric Friedman test is applied to perform statistical comparisons of results over eight datasets.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea de Almeida Brito ◽  
Heráclio Alves de Araújo ◽  
Gilney Figueira Zebende

AbstractDue to the importance of generating energy sustainably, with the Sun being a large solar power plant for the Earth, we study the cross-correlations between the main meteorological variables (global solar radiation, air temperature, and relative air humidity) from a global cross-correlation perspective to efficiently capture solar energy. This is done initially between pairs of these variables, with the Detrended Cross-Correlation Coefficient, ρDCCA, and subsequently with the recently developed Multiple Detrended Cross-Correlation Coefficient, $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2. We use the hourly data from three meteorological stations of the Brazilian Institute of Meteorology located in the state of Bahia (Brazil). Initially, with the original data, we set up a color map for each variable to show the time dynamics. After, ρDCCA was calculated, thus obtaining a positive value between the global solar radiation and air temperature, and a negative value between the global solar radiation and air relative humidity, for all time scales. Finally, for the first time, was applied $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2 to analyze cross-correlations between three meteorological variables at the same time. On taking the global radiation as the dependent variable, and assuming that $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}={\bf{1}}$$DMCx2=1 (which varies from 0 to 1) is the ideal value for the capture of solar energy, our analysis finds some patterns (differences) involving these meteorological stations with a high intensity of annual solar radiation.


Sign in / Sign up

Export Citation Format

Share Document