temperature amplitude
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 21)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Wentao Tang ◽  
Shaodong Zhang ◽  
Chunming Huang ◽  
Kaiming Huang ◽  
Yun Gong ◽  
...  

AbstractThe global amplitude of the westward propagating quasi-16-day waves (16DW) with wavenumber 1 (Q16W1), the strongest component of 16DW, are derived from the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis temperature and zonal wind data sets from February 1979 to January 2018. In terms of temperature and zonal wind, strong climatologically average amplitudes of Q16W1 appear in the upper stratosphere at mid–high latitudes in both hemispheres, and the wave amplitude is stronger in the Northern Hemisphere (NH) than in the Southern Hemisphere (SH). Multivariate linear regression is separately applied to calculate the responses of the Q16W1 temperature and zonal wind amplitudes to the QBO (quasi-biennial oscillation), ENSO (El Niño-Southern Oscillation), solar activity and linear trends of the Q16W1 amplitude. The QBO signatures of the Q16W1 temperature and zonal wind amplitudes are mainly located in the stratosphere. The Q16W1 has significant QBO responses at low latitudes. In addition, only the temperature amplitude presents a larger QBO signature in its strongest climatological amplitude region. No significant responses to ENSO and solar activity are observed in temperature and zonal wind amplitudes. The linear trends of the monthly mean Q16W1 temperature and zonal wind amplitude are generally positive, especially in the mid-upper stratosphere. The trend is asymmetric about the equator and significantly stronger in the NH than in the SH. The seasonal variation in the trend of the temperature amplitude is studied and illustrated to be stronger in winter and weaker in spring and autumn. Further investigation suggests that the background and local instability trends contribute most of the increasing trend of the Q16W1 amplitude. In winter in both hemispheres, a weakening trend of eastward zonal wind provides more favourable background wind for Q16W1 upward propagation, in autumn and winter in the NH and in spring, autumn and winter in the SH, and the increasing trend of local instability may enhance wave excitation. Graphical Abstract


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5644
Author(s):  
Mateu Colom ◽  
Javier Rodríguez-Aseguinolaza ◽  
Arantza Mendioroz ◽  
Agustín Salazar

We present a complete characterization of the width and depth of a very narrow fatigue crack developed in an Al-alloy dog bone plate using laser-spot lock-in thermography. Unlike visible micrographs, which show many surface scratches, the thermographic image clearly identifies the presence of a single crack about 1.5 mm long. Once detected, we focus a modulated laser beam close to the crack and we record the temperature amplitude. By fitting the numerical model to the temperature profile across the crack, we obtain both the width and depth simultaneously, at the location of the laser spot. Repeating the process for different positions of the laser spot along the crack length, we obtain the distribution of the crack width and depth. We show that the crack has an almost constant depth (0.7 mm) and width (1.5 µm) along 0.7 mm and features a fast reduction in both quantities until the crack vanishes. The results prove the ability of laser-spot lock-in thermography to fully characterize quantitatively narrow cracks, even below 1 µm.


Oecologia ◽  
2021 ◽  
Vol 197 (2) ◽  
pp. 365-371
Author(s):  
Jan-Åke Nilsson ◽  
Andreas Nord

AbstractMany birds and mammals show substantial circadian variation in body temperature, which has been attributed to fluctuations in ambient temperature and energy reserves. However, to fully understand the variation in body temperature over the course of the day, we also need to consider effects of variation in work rate. We made use of a dataset on body temperature during the resting and active periods in female marsh tits (Poecile palustris) that bred in a temperate area and were subjected to experimental changes in reproductive investment through brood size manipulations. Furthermore, the amplitude increased with daytime, but were unaffected by nighttime, ambient temperature. Amplitudes in females with manipulated broods were 44% above predictions based on inter-specific allometric relationships. In extreme cases, amplitudes were > 100% above predicted values. However, no individual female realised the maximum potential amplitude (8.5 °C, i.e. the difference between the highest and lowest body temperature within the population) but seemed to prioritise either a reduction in body temperature at night or an increase in body temperature in the day. This suggests that body temperature amplitude might be constrained by costs that preclude extensive use of both low nighttime and high daytime body temperatures within the same individual. Amplitudes in the range found here (0.5–6.7 °C) have previously mostly been reported from sub-tropical and/or arid habitats. We show that comparable values can also be found amongst birds in relatively cool, temperate regions, partly due to a pronounced increase in body temperature during periods with high work rate.


2021 ◽  
Vol 12 ◽  
Author(s):  
Priti ◽  
Gyan P. Mishra ◽  
Harsh K. Dikshit ◽  
Vinutha T. ◽  
M. Tomuilim Tontang ◽  
...  

Mungbeans and lentils are relatively easily grown and cheaper sources of microgreens, but their phytonutrient diversity is not yet deeply explored. In this study, 20 diverse genotypes each of mungbean and lentil were grown as microgreens under plain-altitude (Delhi) and high-altitude (Leh) conditions, which showed significant genotypic variations for ascorbic acid, tocopherol, carotenoids, flavonoid, total phenolics, DPPH (1, 1-diphenyl-2-picrylhydrazyl), FRAP (ferric-reducing antioxidant power), peroxide activity, proteins, enzymes (peroxidase and catalase), micronutrients, and macronutrients contents. The lentil and mungbean genotypes L830 and MH810, respectively, were found superior for most of the studied parameters over other studied genotypes. Interestingly, for most of the studied parameters, Leh-grown microgreens were found superior to the Delhi-grown microgreens, which could be due to unique environmental conditions of Leh, especially wide temperature amplitude, photosynthetically active radiation (PAR), and UV-B content. In mungbean microgreens, total phenolics content (TPC) was found positively correlated with FRAP and DPPH, while in lentil microgreens, total flavonoid content (TFC) was found positively correlated with DPPH. The most abundant elements recorded were in the order of K, P, and Ca in mungbean microgreens; and K, Ca, and P in the lentil microgreens. In addition, these Fabaceae microgreens may help in the nutritional security of the population residing in the high-altitude regions of Ladakh, especially during winter months when this region remains landlocked due to heavy snowfall.


Author(s):  
Sirojiddin Fayozovich Ergashev ◽  
Kuchkarov Akmaljon Axmadaliyevich ◽  
Mamasadikova Umida Yusupjonovna

The article discusses the principles of constructing an optoelectronic device without optical systems for remote control of the temperature of solar installations and small objects. A block diagram of the developed device is shown and its principle of action is laid out. Keywords: optoelectronic, temperature, amplitude detector, thermal radiation, spectral density.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3101
Author(s):  
Bartosz Ciupek ◽  
Wojciech Judt ◽  
Karol Gołoś ◽  
Rafał Urbaniak

The paper presents the methods of determination of the actual operation of solid fuel heating boilers in Poland. The analysis was based on an average annual distribution of the actual power outputs of the solid fuel heating boilers operated in four selected locations in Poland. Based on said data, three characteristic percent shares have been estimated of the nominal power outputs, at which the heating boilers in Poland operate throughout the year (divided into four characteristic portions—the seasons of the year). Additionally, for the analysis, the authors took into account the average annual temperature amplitude and the annual air quality information for the discussed locations and analyzed 30 solid fuel heating boilers in terms of their performance in the laboratory certification tests. In the final stage of the investigations, the authors initiated laboratory tests on the application of the combustion quality analyzers and their potential benefits.


2021 ◽  
Vol 13 ◽  
Author(s):  
Patrick Eggenberger ◽  
Michael Bürgisser ◽  
René M. Rossi ◽  
Simon Annaheim

Wearable devices for remote and continuous health monitoring in older populations frequently include sensors for body temperature measurements (i.e., skin and core body temperatures). Healthy aging is associated with core body temperatures that are in the lower range of age-related normal values (36.3 ± 0.6°C, oral temperature), while patients with Alzheimer’s disease (AD) exhibit core body temperatures above normal values (up to 0.2°C). However, the relation of body temperature measures with neurocognitive health in older adults remains unknown. This study aimed to explore the association of body temperature with cognitive performance in older adults with and without mild cognitive impairment (MCI). Eighty community-dwelling older adults (≥65 years) participated, of which 54 participants were cognitively healthy and 26 participants met the criteria for MCI. Skin temperatures at the rib cage and the scapula were measured in the laboratory (single-point measurement) and neuropsychological tests were conducted to assess general cognitive performance, episodic memory, verbal fluency, executive function, and processing speed. In a subgroup (n = 15, nine healthy, six MCI), skin and core body temperatures were measured continuously during 12 h of habitual daily activities (long-term measurement). Spearman’s partial correlation analyses, controlled for age, revealed that lower median body temperature and higher peak-to-peak body temperature amplitude was associated with better general cognitive performance and with better performance in specific domains of cognition; [e.g., rib median skin temperature (single-point) vs. processing speed: rs = 0.33, p = 0.002; rib median skin temperature (long-term) vs. executive function: rs = 0.56, p = 0.023; and peak-to-peak core body temperature amplitude (long-term) vs. episodic memory: rs = 0.51, p = 0.032]. Additionally, cognitively healthy older adults showed lower median body temperature and higher peak-to-peak body temperature amplitude compared to older adults with MCI (e.g., rib median skin temperature, single-point: p = 0.035, r = 0.20). We conclude that both skin and core body temperature measures are potential early biomarkers of cognitive decline and preclinical symptoms of MCI/AD. It may therefore be promising to integrate body temperature measures into multi-parameter systems for the remote and continuous monitoring of neurocognitive health in older adults.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 300
Author(s):  
Yong Li ◽  
Na Li ◽  
Jiacheng Feng ◽  
Jianing Qian ◽  
Yajie Shan

Identifying and quantifying exchange flux across sediment-water interface is crucial when considering water and nutrient contributions to a eutrophic lake. In this study, observed temporal temperature distributions in shallow sediment of Lake Taihu (Eastern China) based on three-depth sensors at 14 sites throughout 2016 were used to assess temporal water exchange patterns. Results show that temporal temperature in shallow sediments differed with sampling sites and depths and the temperature amplitudes also clearly shrunk as the offshore distance increasing. Exchange fluxes estimated using the VFLUX 2 model based on temperature amplitude show that alternating-direction temporal flow exists in the eastern zone of Lake Taihu with averages of −13.0, −0.6, and 3.4 mm day−1 (negative represents discharging into the lake) at three nearshore sites (0.5, 2.0, and 6.0 km away from the shoreline, respectively). Whereas downwelling flow occurred throughout almost the entire year with averages of 37.7, 23.5, and 6.6 mm day−1 at the three southern nearshore sites, respectively. However, upwelling flow occurred throughout almost the entire year and varied widely in the western zone with averages of −74.8, 45.9, and −27.0 mm day–1 and in the northern zone with averages of −76.2, −55.3, and −51.1 mm day−1. The estimated fluxes in the central zone were relatively low and varied slightly during the entire year (−15.1 to 22.5 mm day−1 with an average of −0.7 mm day−1). Compared with the sub sensor pair (at 5 and 10 cm), the estimated hyporheic fluxes based on the top sensor pair (at 0 and 5 cm) varied within wider ranges and exhibited relatively larger values. Effects of upwelling flow at the western and northern zones need to be paid attention to on nearshore water quality particularly during winter and spring seasons. Estimated flow patterns at the four zones summarily reflect the seasonal water interaction near the sediment surface of Lake Taihu and are beneficial to improve its comprehensive management. Thermal dispersivity usually used for estimating the thermal diffusivity is more sensitive for upward hyporheic flux estimating even if with a low flux. Temperature amplitude ratio method can be used to estimate the exchange flux and suitable for low flux conditions (either upwelling or downwelling). A better evaluation of the exchange flux near inclined nearshore zones might need an optimized installation of temperature sensors along with the potential flow path and/or a vertical two-dimensional model in the future.


2020 ◽  
Vol 7 ◽  
Author(s):  
Tal Idan ◽  
Liron Goren ◽  
Sigal Shefer ◽  
Itzchak Brickner ◽  
Micha Ilan

Determining demosponge reproductive strategies is essential to understanding their ecology and life history, as well as for the management of benthic marine environments. This is especially important in mesophotic ecosystems, which have been suggested to serve as a refuge for shallow-water populations and for which knowledge is lacking. Here we compared the reproductive strategies of two common Mediterranean demosponges species: Chondrosia reniformis and Axinella polypoides, which can be found in both shallow and mesophotic habitats along the Israeli coast. Samples were collected over 2 years, via SCUBA diving from the shallow coast (2–32 m) and Remotely Operated Vehicle from the mesophotic sponge grounds (95–120 m). A. polypoides and C. renifornis differed in oocyte morphology and development, but both demonstrated reproductive plasticity with regard to temperature and depth: temperature appears to regulate their reproduction in the shallow water, as both species exhibited seasonality; whereas, in the mesophotic zone, where the temperature amplitude is much smaller, seasonality was not observed for either species. Furthermore, in the mesophotic zone, C. reniformis exhibited low fecundity and probably invests more in asexual reproduction by budding. Mesophotic A. polypoides, in contrast, exhibited enhanced and continuous asynchronous sexual reproduction year-round. Our findings suggest that reproduction plasticity may be a general rule for sponge species that inhabit different habitats; such plasticity could allow sponges to thrive in different environmental conditions. These findings further emphasize the importance of protecting the mesophotic sponge grounds, which can serve as a refuge in the face of the adverse impact of anthropogenic disturbances and rising seawater temperatures.


Sign in / Sign up

Export Citation Format

Share Document