Estimation of Global Solar Radiation on Horizontal Surface in Kano, Nigeria Using Air Temperature Amplitude

Author(s):  
Mustapha M, M. W. Mustafa ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea de Almeida Brito ◽  
Heráclio Alves de Araújo ◽  
Gilney Figueira Zebende

AbstractDue to the importance of generating energy sustainably, with the Sun being a large solar power plant for the Earth, we study the cross-correlations between the main meteorological variables (global solar radiation, air temperature, and relative air humidity) from a global cross-correlation perspective to efficiently capture solar energy. This is done initially between pairs of these variables, with the Detrended Cross-Correlation Coefficient, ρDCCA, and subsequently with the recently developed Multiple Detrended Cross-Correlation Coefficient, $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2. We use the hourly data from three meteorological stations of the Brazilian Institute of Meteorology located in the state of Bahia (Brazil). Initially, with the original data, we set up a color map for each variable to show the time dynamics. After, ρDCCA was calculated, thus obtaining a positive value between the global solar radiation and air temperature, and a negative value between the global solar radiation and air relative humidity, for all time scales. Finally, for the first time, was applied $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2 to analyze cross-correlations between three meteorological variables at the same time. On taking the global radiation as the dependent variable, and assuming that $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}={\bf{1}}$$DMCx2=1 (which varies from 0 to 1) is the ideal value for the capture of solar energy, our analysis finds some patterns (differences) involving these meteorological stations with a high intensity of annual solar radiation.


2018 ◽  
Vol 33 (2) ◽  
pp. 238-246
Author(s):  
João Rodrigo de Castro ◽  
Santiago Vianna Cuadra ◽  
Luciana Barros Pinto ◽  
João Marcelo Hoffmann de Souza ◽  
Marcos Paulo dos Santos ◽  
...  

Abstract The objective of this study was to evaluate the use of estimated global solar radiation data in the simulations of potential yield of irrigated rice. Global solar radiation was estimated by four empirical models, based on air temperature, and a meteorological satellite derivated. The empirical models were calibrated and validated for 10 sites, representative of the six rice regions of the State of Rio Grande do Sul - Brazil. To evaluate the impact of the radiation estimates on irrigated rice yield simulations, the CERES-Rice model, calibrated for four cultivars, was used. The estimates of global solar radiation of the empirical models based on the air temperature showed deviations, from the observed values, of 20 to 30% and the estimated by satellite deviations of more than 30%. The global solar radiation data estimated by the Hargreaves and Samani, Donatelli and Campbell and derived satellite (PowerNasa) type air temperature-based empirical models can be used as input data in simulation models of crop growth, development and productivity of irrigated rice.


2021 ◽  
Vol 7 ◽  
pp. 136-157
Author(s):  
Hai Tao ◽  
Ahmed A. Ewees ◽  
Ali Omran Al-Sulttani ◽  
Ufuk Beyaztas ◽  
Mohammed Majeed Hameed ◽  
...  

Author(s):  
Zahraa E. Mohamed

AbstractThe main objective of this paper is to employ the artificial neural network (ANN) models for validating and predicting global solar radiation (GSR) on a horizontal surface of three Egyptian cities. The feedforward backpropagation ANNs are utilized based on two algorithms which are the basic backpropagation (Bp) and the Bp with momentum and learning rate coefficients respectively. The statistical indicators are used to investigate the performance of ANN models. According to these indicators, the results of the second algorithm are better than the other. Also, model (6) in this method has the lowest RMSE values for all cities in this study. The study indicated that the second method is the most suitable for predicting GSR on a horizontal surface of all cities in this work. Moreover, ANN-based model is an efficient method which has higher precision.


Sign in / Sign up

Export Citation Format

Share Document