scholarly journals A derivation of Griffith functionals from discrete finite-difference models

Author(s):  
Vito Crismale ◽  
Giovanni Scilla ◽  
Francesco Solombrino

AbstractWe analyze a finite-difference approximation of a functional of Ambrosio–Tortorelli type in brittle fracture, in the discrete-to-continuum limit. In a suitable regime between the competing scales, namely if the discretization step $$\delta $$ δ is smaller than the ellipticity parameter $$\varepsilon $$ ε , we show the $$\varGamma $$ Γ -convergence of the model to the Griffith functional, containing only a term enforcing Dirichlet boundary conditions and no $$L^p$$ L p fidelity term. Restricting to two dimensions, we also address the case in which a (linearized) constraint of non-interpenetration of matter is added in the limit functional, in the spirit of a recent work by Chambolle, Conti and Francfort.

Author(s):  
Mani Mehra ◽  
Kuldip Singh Patel ◽  
Ankita Shukla

AbstractIn this article, compact finite difference approximations for first and second derivatives on the non-uniform grid are discussed. The construction of diffusion wavelets using compact finite difference approximation is presented. Adaptive grids are obtained for non-smooth functions in one and two dimensions using diffusion wavelets. High-order accurate wavelet-optimized compact finite difference (WOCFD) method is developed to solve convection–diffusion equations in one and two dimensions on an adaptive grid. As an application in option pricing, the solution of Black–Scholes partial differential equation (PDE) for pricing barrier options is obtained using the proposed WOCFD method. Numerical illustrations are presented to explain the nature of adaptive grids for each case.


2012 ◽  
Vol 12 (1) ◽  
pp. 193-225 ◽  
Author(s):  
N. Anders Petersson ◽  
Björn Sjögreen

AbstractWe develop a stable finite difference approximation of the three-dimensional viscoelastic wave equation. The material model is a super-imposition of N standard linear solid mechanisms, which commonly is used in seismology to model a material with constant quality factor Q. The proposed scheme discretizes the governing equations in second order displacement formulation using 3N memory variables, making it significantly more memory efficient than the commonly used first order velocity-stress formulation. The new scheme is a generalization of our energy conserving finite difference scheme for the elastic wave equation in second order formulation [SIAM J. Numer. Anal., 45 (2007), pp. 1902-1936]. Our main result is a proof that the proposed discretization is energy stable, even in the case of variable material properties. The proof relies on the summation-by-parts property of the discretization. The new scheme is implemented with grid refinement with hanging nodes on the interface. Numerical experiments verify the accuracy and stability of the new scheme. Semi-analytical solutions for a half-space problem and the LOH.3 layer over half-space problem are used to demonstrate how the number of viscoelastic mechanisms and the grid resolution influence the accuracy. We find that three standard linear solid mechanisms usually are sufficient to make the modeling error smaller than the discretization error.


Author(s):  
Tesfaye Aga Bullo ◽  
Guy Aymard Degla ◽  
Gemechis File Duressa

A parameter-uniform finite difference scheme is constructed and analyzed for solving singularly perturbed parabolic problems with two parameters. The solution involves boundary layers at both the left and right ends of the solution domain. A numerical algorithm is formulated based on uniform mesh finite difference approximation for time variable and appropriate piecewise uniform mesh for the spatial variable. Parameter-uniform error bounds are established for both theoretical and experimental results and observed that the scheme is second-order convergent. Furthermore, the present method produces a more accurate solution than some methods existing in the literature.   


Sign in / Sign up

Export Citation Format

Share Document