A novel active vibration isolator applied for micro-gyro by array of deposited electrodes

2009 ◽  
Vol 15 (7) ◽  
pp. 1017-1026
Author(s):  
Nan-Chyuan Tsai ◽  
Chung-Yang Sue ◽  
Bing-Hong Liou
2016 ◽  
Vol 2016 (DPC) ◽  
pp. 000853-000880
Author(s):  
Chong Li ◽  
C. Lavinia Elana ◽  
Robert N. Dean ◽  
George T. Flowers

Several types of micro-devices are adversely affected by high frequency mechanical vibrations present in the operating environment. Examples include MEMS vibratory gyroscopes and resonators, and micro-optics. Various types of MEMS vibration isolators have been developed for use in the packaging of these vibration sensitive devices. Passive isolators consist of a spring-mass-damper MEMS device and usually have a very high mechanical quality factor, which makes them susceptible to ringing at the isolator's resonant frequency. Active isolators have been realized by using state sensing of the proof mass motion and feeding one or more of these states back through an actuator to adjust the frequency response of the isolator. For example, the technique known as skyhook damping uses velocity feedback to adjust, and typically increase, the damping of the isolator. Although these technique are doable, they require state sensing or state estimation, with feedback electronics to drive the actuator. A simpler MEMS active vibration isolator architecture employs only a parallel plate actuator (PPA) with the MEMS spring-mass-damper structure. The PPA driven with a DC voltage, in its stable operating range, displaces the proof mass, which results in a change in the effective system spring constant due to the electrostatic spring softening effect. This results in a change in the resonant frequency and the quality factor of the isolator. However, due to the nonlinearities inherent in this type of device, the stable operating range is reduced as the PPA voltage is increased. Furthermore, even when the isolator is stable in steady-state, a sufficiently large transient response can also drive it into the unstable regime, resulting in the electrodes snapping into contact. In this study, the PPA based active vibrator isolator is developed and its performance is evaluated. The characteristics of the transient instability are investigated and its stable range of operation is specified, for booth external disturbances and rapid application of the control voltage. This MEMS PPA based active vibration isolator can improve performance compared to passive isolators, while being much simpler than state feedback active isolators.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Kai Meng ◽  
Yi Sun ◽  
Huayan Pu ◽  
Jun Luo ◽  
Shujin Yuan ◽  
...  

In this study, a novel vibration isolator is presented. The presented isolator possesses the controllable stiffness and can be employed in vibration isolation at a low-resonance frequency. The controllable stiffness of the isolator is obtained by manipulating the negative stiffness-based current in a system with a positive and a negative stiffness in parallel. By using an electromagnetic device consisting of permanent magnetic rings and coils, the designed isolator shows that the stiffness can be manipulated as needed and the operational stiffness range is large in vibration isolation. We experimentally demonstrate that the modeling of controllable stiffness and the approximation of the negative stiffness expressions are effective for controlling the resonance frequency and the transmissibility of the vibration isolation system, enhancing applications such as warship stealth technology, vehicles suspension system, and active vibration isolator.


2014 ◽  
Vol 494-495 ◽  
pp. 491-496
Author(s):  
Hua Ping Mei ◽  
Hao Yue Tian ◽  
Shuan Huang

The vibration isolators have witnessed significant developments due to pressing demands for high resolution metrology and manufacturing, optical, physical and chemical experiments. In the view of these requirements, the engineers and physicists have exploited different types of vibration isolators. This paper firstly presents the recent developments on the passive vibration isolators. It finds that the passive vibration isolators can constrain the high frequency oscillation. The active control is the efficient method to cancel the low frequency vibration. Then, the paper is concerned with the recent advances on the active vibration isolator. The appropriate actuator, sensor and advanced control method are the key component of the active vibration isolator to enhance their vibration isolation properties. Finally, the author proposes that the magnetic suspension vibration isolator is a future research direction in the field of the vibration isolation.


1986 ◽  
Vol 80 (4) ◽  
pp. 1280-1280
Author(s):  
George T. Pinson

2007 ◽  
Vol 300 (3-5) ◽  
pp. 644-661 ◽  
Author(s):  
A. Preumont ◽  
M. Horodinca ◽  
I. Romanescu ◽  
B. de Marneffe ◽  
M. Avraam ◽  
...  

1997 ◽  
Vol 68 (8) ◽  
pp. 3211-3219 ◽  
Author(s):  
D. B. Newell ◽  
S. J. Richman ◽  
P. G. Nelson ◽  
R. T. Stebbins ◽  
P. L. Bender ◽  
...  

Author(s):  
Hans W. Schaeffer ◽  
Atul G. Kelkar

This paper presents a methodology of designing, modeling, and controlling a fully pneumatic semi-active vibration isolator system. The prototype vibration isolator system consists of an air spring, a variable orifice valve, and an accumulator which has the ability to simultaneously adjust the damping and natural frequency characteristics of the system. This paper presents a comprehensive work of modeling, hardware design, control design, and experimental validation of the proposed semi-active vibration isolation system. A higher fidelity model is obtained by complete characterization of nonlinear relationships between pressure versus volume and effective orifice area versus ride height. The performance of three semi-active controller designs — Linear Quadratic Impulse (LQI), Modified Skyhook, and Relative Displacement — is evaluated and compared experimentally using an OEM Peterbilt cabin suspension unit. The results demonstrate that the properly tuned semi-active suspension provides increased vibration isolation over the traditional passive cabin suspension design.


Sign in / Sign up

Export Citation Format

Share Document