Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in Western Brazilian Amazon

Mycorrhiza ◽  
2010 ◽  
Vol 21 (4) ◽  
pp. 255-267 ◽  
Author(s):  
Sidney Luiz Stürmer ◽  
José Oswaldo Siqueira
2021 ◽  
Vol 51 ◽  
pp. e1370
Author(s):  
Sara Lucía Camargo-Ricalde ◽  
Noé Manuel Montaño ◽  
Susana A. Montaño-Arias ◽  
Claudia Janette De la Rosa-Mera ◽  
Eduardo Chimal-Sánchez

Background: Arbuscular mycorrhizal fungi (AMF) and biocrusts (BC), occur inside and outside Mimosa luisana resource islands (M. luisana-RI) at the Tehuacán-Cuicatlán Valley, Puebla-Oaxaca, Mexico. Objectives: To determine: 1) Whether there are AMF within biocrusts, 2) The abundance and richness of AMF, and 3) The potential of AMF propagation in BC and soil below BC inside (BC-RI, soil-BC-RI) and outside (BC-ORI, soil-BC-ORI) M. luisana-RI, and open areas (OA), in the rainy (September 2011) and dry (May 2012) seasons. Methods: AMF were extracted of biocrusts and soil samples collected inside and outside M. luisana-RI and OA, in both seasons. Spore abundance and species richness, as well as potential propagation of AMF were determined in laboratory and greenhouse. Results and Conclusions: Biocrusts inside and outside M. luisana-RI form reservoirs of AMF spores and species richness (12 spp.), and act as “shields” protecting AMF compared with OA (5 spp.). Seasonal changes in the AMF composition within the biocrusts and the soil suggest that the availability of water drives AMF assemblages. The AM fungal spores in BC-RI and BC-ORI have a high potential of propagation; however, the BC-ORI by buffering the loss of AMF in soil-BC-ORI, they form mycorrhizal inocula within the soil.


2006 ◽  
Vol 20 (3) ◽  
pp. 513-521 ◽  
Author(s):  
Sidney Luiz Stürmer ◽  
Osmar Klauberg Filho ◽  
Maike Hering de Queiroz ◽  
Margarida Matos de Mendonça

Arbuscular mycorrhizal fungi (AMF) species diversity and mycorrhizal inoculum potential were assessed in areas representative of stages of secondary succession in the Brazilian Atlantic Rain Forest. Within each stage - pioneer, 'capoeirinha' and 'capoeirão'- four transects were established and three soil samples were taken along each transect. The plant community was dominated by Pteridium aquilinium in the pioneer stage, while Dodonaea viscosa and P. aquilinium were co-dominants in the 'capoeirinha' stage. In capoeirão, Miconia cinnamomifolia was dominant followed by Euterpe edulis. Total spore number per 100 g soil was significantly larger in the 'capoeirinha' stage than in the other stages, although the number of viable spores was similar among stages. Acaulosporaceae and Glomeraceae were the predominant families accounting for 83% of the total spores recovered. Of the 18 spore morphotypes, 10 were allocated to known species, with Acaulospora sp. and Glomus sp. being the dominants recovered in all samples. Simpson's index of diversity and evenness for AMF species were not significantly different among the successional stages and AMF species richness was negatively correlated with plant species richness. Soil from 'Capoeirinha" showed the highest inoculum potential (37%). Dominance of the mycorrhizal community by few sporulators and the relationship between plant and fungal diversity are discussed.


Pedobiologia ◽  
2021 ◽  
Vol 89 ◽  
pp. 150768
Author(s):  
Raquel Milagros Rodríguez-Rodríguez ◽  
Karl Kemmelmeier ◽  
Daniela de Fátima Pedroso ◽  
Flávio Araújo Pinto ◽  
Jessé Valentim dos Santos ◽  
...  

1997 ◽  
Vol 75 (2) ◽  
pp. 320-332 ◽  
Author(s):  
R. E. Koske ◽  
J. N. Gemma ◽  
N. Jackson

Small plots of highly maintained turfs of creeping bentgrass (Agrostis palustris cv. Penncross) and velvet bentgrass (Agrostis canina cv. Kingstown) and a marginally maintained stand of annual bluegrass (Poa annua) were sampled intensively over a 15-month period to measure the populations of spores of arbuscular mycorrhizal fungi (AMF) associated with their root systems. Direct isolation of spores and trap cultures were used to assess the AMF communities. Spores of more than 18 species of AMF were isolated. The six dominant species (as measured by the abundance and frequency of occurrence of spores) were Acaulospora mellea, an undescribed species of Acaulospora, Scutellospora calospora, Glomus occultum, Glomus etunicatum, and Entrophospora infrequens. Spores of 17 species of AMF were recovered from the root zones of velvet bentgrass, 15 species from creeping bentgrass, and 14 from annual bluegrass. Soil fertility differed among the three sites, and it was not possible to ascribe differences in the AMF communities in each plot to any particular variable (e.g., host, pH, soil P). Average spore abundance was greatest in the creeping bentgrass plot (191.0 spores/100 mL), next in the velvet bentgrass plot (82.4 spores/100 mL), and least in the bluegrass plot (28.4 spores/100 mL). Spores were recovered from a significantly greater percentage of the samples from the bentgrass plots (88.5 – 96.8%) than from the bluegrass plot (76.6%). Spores of an average of 4.5 species of AMF were isolated monthly from creeping bentgrass, 3.3 from velvet bentgrass and 2.0 from bluegrass. Average species richness and spore abundance were positively correlated in the creeping bentgrass and bluegrass plots (r = 0.77, p = 0.001, and r = 0.68, p = 0.006), but not in the velvet bentgrass plot. Spore abundance showed strong seasonal trends in all three plots (p = 0.03 – 0.001), with numbers increasing from spring until November. Richness and abundance declined from December until the following spring. In the bluegrass area, which experienced summer drought, spore populations and richness also showed a precipitous decline in July and August in the 1st year of the study (1990), but not in the 2nd year (1991). No such summer decline occurred in the bentgrass plots that received irrigation. The AMF community that was circumscribed by direct spore counts from the field usually was highly dissimilar to the community that was estimated by trap cultures initiated using soil from the turf areas. Key words: annual bluegrass, arbuscular mycorrhizal fungi, creeping bentgrass, putting greens, turfgrass, velvet bentgrass.


1999 ◽  
Vol 8 (3) ◽  
pp. 309-318 ◽  
Author(s):  
M. VESTBERG ◽  
M. CARDOSO ◽  
A. MÅRTENSSON

The occurrence of arbuscule-forming fungi in different cropping systems was investigated at Cochabamba in the province of Cercado, Bolivia. The cropping systems included grain and mixed pasture systems, with or without fertilization and agrochemicals. Geographically, the soils studied were situated at 17°23'9'' southern latitude and 66°9'35'' western longitude and a mean height of 2600 m above sea level. Spores of four arbuscular mycorrhiza fungi-forming genera were observed; Glomus Tul. & Tul., Entrophospora Ames & Schneider, Sclerocystis Berk. & Broome emend. Almeida & Schenck and Scutellospora Walker & Sanders. Glomus was the dominating genus, followed by Sclerocystis; Scutellospora and Entrophospora were observed occasionally. A cropping system consisting of a native pasture without any fertilization or other plant or soil treatments had the highest numbers of spores and the highest species richness, i.e. eight out of nine species identified. The mycorrhizal diversity measured with the Shannon-Wiener index did however not differ very much between cropping systems. ;


Botany ◽  
2018 ◽  
Vol 96 (11) ◽  
pp. 767-778 ◽  
Author(s):  
Catarina Maria Aragão de Mello ◽  
Gladstone Alves da Silva ◽  
Fritz Oehl ◽  
Iolanda Ramalho da Silva ◽  
Inácio Pascoal do Monte Junior ◽  
...  

The objective of this study was to determine the species richness, diversity, and communities of arbuscular mycorrhizal fungi (AMF), based on the morphology of their spores, in maize plantations along an edaphoclimatic gradient going from a humid zone (original area of Atlantic rainforest), to a transition zone and a drier zone (original area of Caatinga), to increase the understanding of the ecology of AMF in tropical agroecosystems. We extracted glomerospores from soil samples from maize plantations in each mesoregion and analysed AMF propagules and community structure. A total of 57 AMF taxa were identified, of which two are new to science. The most probable number of AMF infective propagules did not differ among the three areas. A greater number of glomerospores was obtained from the transition site, whereas species richness for AMF differed between the high humidity and transition sites. The composition of AMF communities differed among sites, with edaphic attributes significantly associated with AMF community composition. The environmental conditions of each mesoregion contribute to the structural differences of AMF assemblages in soils cultivated by the same host plant (maize).


Sign in / Sign up

Export Citation Format

Share Document