Communities of arbuscular mycorrhizal fungi in maize (Zea mays L.) crops along an edaphoclimatic gradient in Northeast Brazil

Botany ◽  
2018 ◽  
Vol 96 (11) ◽  
pp. 767-778 ◽  
Author(s):  
Catarina Maria Aragão de Mello ◽  
Gladstone Alves da Silva ◽  
Fritz Oehl ◽  
Iolanda Ramalho da Silva ◽  
Inácio Pascoal do Monte Junior ◽  
...  

The objective of this study was to determine the species richness, diversity, and communities of arbuscular mycorrhizal fungi (AMF), based on the morphology of their spores, in maize plantations along an edaphoclimatic gradient going from a humid zone (original area of Atlantic rainforest), to a transition zone and a drier zone (original area of Caatinga), to increase the understanding of the ecology of AMF in tropical agroecosystems. We extracted glomerospores from soil samples from maize plantations in each mesoregion and analysed AMF propagules and community structure. A total of 57 AMF taxa were identified, of which two are new to science. The most probable number of AMF infective propagules did not differ among the three areas. A greater number of glomerospores was obtained from the transition site, whereas species richness for AMF differed between the high humidity and transition sites. The composition of AMF communities differed among sites, with edaphic attributes significantly associated with AMF community composition. The environmental conditions of each mesoregion contribute to the structural differences of AMF assemblages in soils cultivated by the same host plant (maize).

2016 ◽  
Vol 40 (3) ◽  
pp. 326-336 ◽  
Author(s):  
Hesmael Antonio Orlandi Costa ◽  
Sidney Luiz Stürmer ◽  
Carla Ragonezi ◽  
Paulo Henrique Grazziotti ◽  
Danielle Cristina Fonseca Santos Grazziotti ◽  
...  

ABSTRACT Syngonanthus elegans is an endangered plant species occurring in the Brazilian Cerrado whose interaction with arbuscular mycorrhizal fungi (AMF) is poorly understood. The aim of this work was to evaluate the occurrence of AMF species and mycorrhizal colonization of S. elegans in two sampling areas named "Soberbo" stream (Soberbo) and "Parque Nacional das Sempre-Vivas" (Park), both found in Diamantina-MG, Brazil. In each area, one plot (100 x 100 m) was established, and roots and soil samples near the roots were collected from 10 plants in each plot. Further sampling included three specimens each of Loudetiopsis chrysothrix and Xyris sp.. Typical mycorrhizal colonization structures were observed in S. elegans roots, and colonization was measured at 75%. Considering both sites and all three hosts, 26 AMF species were recovered, 8 of which were identified only at the genus level. Glomus sp. 1, Scutellospora pernambucana, Acaulospora cavernata and Acaulospora mellea were classified as dominant in both areas. Other species were also considered dominant, including Glomus sp. 4 in Soberbo and Dentiscutata biornata and Gigaspora albida in Park. Trap cultures revealed the presence of seven additional species. For S. elegans, AMF species richness was slightly higher in Park than in Soberbo. Simpson diversity and evenness were slightly higher in Soberbo for S. elegans-associated AMF communities. Overall, S. elegans is highly colonized by arbuscular mycorrhizal fungi and is associated with a wide range of AMF species in the field, suggesting that this association is important for the establishment and survival of this threatened species. Some of the observed species may be new to science.


Soil Research ◽  
1979 ◽  
Vol 17 (3) ◽  
pp. 515 ◽  
Author(s):  
WM Porter

Estimates of the number of infective propagules of vesicular-arbuscular (VA) endophytes in two soils were obtained using a most probable number (MPN) method. These estimates were compared with counts of the number of spores in the same soils obtained using a conventional wet sieving method. In one soil, there was good agreement between the number of coarse endophyte propagules, estimated by the MPN technique, and the number of germinable spores extracted using the wet sieving technique. However, a large population of fine endophyte propagules (more than 230 per 50 g soil) could only be enumerated using the MPN technique. In the second soil, fewer coarse endophyte propagules were found using the wet sieving technique than when using the MPN technique. The MPN technique appears to give a more realistic estimate of the number of infective propagules of VA endophytes in field soils than the conventional method.


2019 ◽  
Vol 11 (14) ◽  
pp. 282 ◽  
Author(s):  
Tharles Mesquita Araújo ◽  
Krisle da Silva ◽  
Gilmara Maria Duarte Pereira ◽  
Alexandre Curcino ◽  
Sidney Luiz Stürmer ◽  
...  

Arbuscular mycorrhizal fungi (AMF) are important components of the soil microbiota in terrestrial ecosystems, under the influence of various factors such as soil use and management, and can be adapted to a structure and diversity of fungal communities. The aim of this survey was to evaluate the influence of different systems of land use and management on AMF diversity in the Roraima State, Brazil. We collected soil samples in agroforestry, conventional soybean planting, conventional corn and native forest. After 150 days of incubation in a greenhouse, we extracted the spores in order to evaluate AMF, volume and to determine taxonomic identification. We found 16 species of AMF and the genus Acaulospora was the most frequent, followed by Glomus. Soil under agroforestry system had the highest species richness and the native forest, the lowest. On the other hand, soybean and corn areas presented greater density values than agroforestry system and native forest. In the agroforestry system, SOM attributes, Al3+ and H + Al had influence in AMF species richness. Thus, agroforestry constitute sustainable alternative influencing AMF communities in these ecosystems.


2019 ◽  
Vol 32 (4) ◽  
pp. 995-1004
Author(s):  
FELIPE FERREIRA DA SILVA ◽  
THAINÁ ALVES DOS SANTOS ◽  
EDERSON DA CONCEIÇÃO JESUS ◽  
GUILHERME MONTANDON CHAER

ABSTRACT On-shore oil exploration is one of the main economic activities in the semiarid region (Caatinga biome) of the state of Rio Grande do Norte (RN), Brazil. Gravel mining is an activity associated with oil exploration that causes environmental impacts. Gravel is a base-material for constructions, such as roads and pumpjack bases. The areas of gravel mining and other decommissioned areas where the gravel has been deposited must be revegetated with species native to the biome at end of the activity in the site. An efficient strategy for revegetation of degraded areas has been the planting of leguminous species that can associate with rhizobia and arbuscular mycorrhizal fungi (AMF). Nevertheless, the impact of mining activities on the autochthonous populations of these microorganisms is unknown. The objective of the present work is to characterize the density of rhizobia and AMF spores in four areas impacted by the oil exploration in RN when compared to non-impacted adjacent areas. Gravel samples were collected in dry and rainy seasons in two mining areas: one in a pumpjack base, and one in a waste disposal area. Surface soil (topsoil) samples were collected in adjacent areas with native Caatinga vegetation. Assays were carried out to evaluate the most probable number (MPN) of rhizobia and to identify the type and density of arbuscular mycorrhizal fungi (AMF), using rhizobia trap plants Mimosa tenuiflora (Mart.) Benth. and Mimosa caesalpiniifolia Benth. The MPN of rhizobia was low in all areas, but higher in the rainy season. The highest amount and diversity of AMF spores were found in the dry season. Among the symbiotic microorganisms studied, the AMF presented lower densities in the evaluated areas when compared to those in the adjcent native vegetation areas, denoting the impact of this activity.


Soil Research ◽  
1983 ◽  
Vol 21 (1) ◽  
pp. 73 ◽  
Author(s):  
JM Wilson ◽  
MJ Trinick

Factors affecting the estimation of the number of infective propagules of vesicular arbuscular mycorrhizal fungi by the most probable number (MPN) method were investigated. The value obtained was shown to be dependent on the conditions of the experiment. Both temperature and time of harvest changed the result because of their effects on the growth of both roots and propagules, and hence on their interception. Other factors which must be taken into account in order to optimize the MPN estimate are discussed. The number of infective propagules in a dried root/soil inoculum was shown to be affected by both the amount of infection in the pot culture from which it was formed and by its age.


2006 ◽  
Vol 20 (3) ◽  
pp. 513-521 ◽  
Author(s):  
Sidney Luiz Stürmer ◽  
Osmar Klauberg Filho ◽  
Maike Hering de Queiroz ◽  
Margarida Matos de Mendonça

Arbuscular mycorrhizal fungi (AMF) species diversity and mycorrhizal inoculum potential were assessed in areas representative of stages of secondary succession in the Brazilian Atlantic Rain Forest. Within each stage - pioneer, 'capoeirinha' and 'capoeirão'- four transects were established and three soil samples were taken along each transect. The plant community was dominated by Pteridium aquilinium in the pioneer stage, while Dodonaea viscosa and P. aquilinium were co-dominants in the 'capoeirinha' stage. In capoeirão, Miconia cinnamomifolia was dominant followed by Euterpe edulis. Total spore number per 100 g soil was significantly larger in the 'capoeirinha' stage than in the other stages, although the number of viable spores was similar among stages. Acaulosporaceae and Glomeraceae were the predominant families accounting for 83% of the total spores recovered. Of the 18 spore morphotypes, 10 were allocated to known species, with Acaulospora sp. and Glomus sp. being the dominants recovered in all samples. Simpson's index of diversity and evenness for AMF species were not significantly different among the successional stages and AMF species richness was negatively correlated with plant species richness. Soil from 'Capoeirinha" showed the highest inoculum potential (37%). Dominance of the mycorrhizal community by few sporulators and the relationship between plant and fungal diversity are discussed.


Weed Science ◽  
2019 ◽  
Vol 67 (6) ◽  
pp. 689-701
Author(s):  
Xiaoge Han ◽  
Changchao Xu ◽  
Yutao Wang ◽  
Dan Huang ◽  
Qiang Fan ◽  
...  

AbstractWeed invasion is a prevailing problem in modestly managed lawns. Less attention has been given to the exploration of the role of arbuscular mycorrhizal fungi (AMF) under different invasion pressures from lawn weeds. We conducted a four-season investigation into a Zoysia tenuifolia Willd. ex Thiele (native turfgrass)–threeflower beggarweed [Desmodium triflorum (L.) DC.] (invasive weed) co-occurring lawn. The root mycorrhizal colonizations of the two plants, the soil AM fungal communities and the spore densities under five different coverage levels of D. triflorum were investigated. Desmodium triflorum showed significantly higher root hyphal and vesicular colonizations than those of Z. tenuifolia, while the root colonizations of both species varied significantly among seasons. The increased coverage of D. triflorum resulted in the following effects: (1) the spore density initially correlated with mycorrhizal colonizations of Z. tenuifolia but gradually correlated with those of D. triflorum. (2) Correlations among soil properties, spore densities, and mycorrhizal colonizations were more pronounced in the higher coverage levels. (3) Soil AMF community compositions and relative abundances of AMF operational taxonomic units changed markedly in response to the increased invasion pressure. The results provide strong evidence that D. triflorum possessed a more intense AMF infection than Z. tenuifolia, thus giving rise to the altered host contributions to sporulation, soil AMF communities, relations of soil properties, spore densities, and root colonizations of the two plants, all of which are pivotal for the successful invasion of D. triflorum in lawns.


Sign in / Sign up

Export Citation Format

Share Document