scholarly journals Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings

2011 ◽  
Vol 409 (6) ◽  
pp. 1009-1016 ◽  
Author(s):  
Fernando A. Solís-Domínguez ◽  
Alexis Valentín-Vargas ◽  
Jon Chorover ◽  
Raina M. Maier
2012 ◽  
Vol 32 (13) ◽  
pp. 4071-4078 ◽  
Author(s):  
卢鑫萍 LU Xinping ◽  
杜茜 DU Qian ◽  
闫永利 YAN Yongli ◽  
马琨 MA Kun ◽  
王占军 WANG Zhanjun ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mohamed S. Sheteiwy ◽  
Dina Fathi Ismail Ali ◽  
You-Cai Xiong ◽  
Marian Brestic ◽  
Milan Skalicky ◽  
...  

Abstract Background The present study aims to study the effects of biofertilizers potential of Arbuscular Mycorrhizal Fungi (AMF) and Bradyrhizobium japonicum (B. japonicum) strains on yield and growth of drought stressed soybean (Giza 111) plants at early pod stage (50 days from sowing, R3) and seed development stage (90 days from sowing, R5). Results Highest plant biomass, leaf chlorophyll content, nodulation, and grain yield were observed in the unstressed plants as compared with water stressed-plants at R3 and R5 stages. At soil rhizosphere level, AMF and B. japonicum treatments improved bacterial counts and the activities of the enzymes (dehydrogenase and phosphatase) under well-watered and drought stress conditions. Irrespective of the drought effects, AMF and B. japonicum treatments improved the growth and yield of soybean under both drought (restrained irrigation) and adequately-watered conditions as compared with untreated plants. The current study revealed that AMF and B. japonicum improved catalase (CAT) and peroxidase (POD) in the seeds, and a reverse trend was observed in case of malonaldehyde (MDA) and proline under drought stress. The relative expression of the CAT and POD genes was up-regulated by the application of biofertilizers treatments under drought stress condition. Interestingly a reverse trend was observed in the case of the relative expression of the genes involved in the proline metabolism such as P5CS, P5CR, PDH, and P5CDH under the same conditions. The present study suggests that biofertilizers diminished the inhibitory effect of drought stress on cell development and resulted in a shorter time for DNA accumulation and the cycle of cell division. There were notable changes in the activities of enzymes involved in the secondary metabolism and expression levels of GmSPS1, GmSuSy, and GmC-INV in the plants treated with biofertilizers and exposed to the drought stress at both R3 and R5 stages. These changes in the activities of secondary metabolism and their transcriptional levels caused by biofertilizers may contribute to increasing soybean tolerance to drought stress. Conclusions The results of this study suggest that application of biofertilizers to soybean plants is a promising approach to alleviate drought stress effects on growth performance of soybean plants. The integrated application of biofertilizers may help to obtain improved resilience of the agro ecosystems to adverse impacts of climate change and help to improve soil fertility and plant growth under drought stress.


Author(s):  
Vincenza Cozzolino ◽  
Hiarhi Monda ◽  
Davide Savy ◽  
Vincenzo Di Meo ◽  
Giovanni Vinci ◽  
...  

Abstract Background Increasing the presence of beneficial soil microorganisms is a promising sustainable alternative to support conventional and organic fertilization and may help to improve crop health and productivity. If the application of single bioeffectors has shown satisfactory results, further improvements may arise by combining multiple beneficial soil microorganisms with natural bioactive molecules. Methods In the present work, we investigated in a pot experiment under greenhouse conditions whether inoculation of two phosphate-solubilizing bacteria, Pseudomonas spp. (B2) and Bacillus amyloliquefaciens (B3), alone or in combination with a humic acids (HA) extracted from green compost and/or a commercial inoculum (M) of arbuscular mycorrhizal fungi (AMF), may affect maize growth and soil microbial community. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) fingerprinting analysis were performed to detect changes in the microbial community composition. Results Plant growth, N and P uptake, and mycorrhizal root colonization were found to be larger in all inoculated treatments than in the uninoculated control. The greatest P uptake was found when B. amyloliquefaciens was applied in combination with both HA and arbuscular mycorrhizal fungi (B3HAM), and when Pseudomonas was combined with HA (B2HA). The PLFA-based community profile revealed that inoculation changed the microbial community composition. Gram+/Gram− bacteria, AMF/saprotrophic fungi and bacteria/fungi ratios increased in all inoculated treatments. The greatest values for the AMF PLFA marker (C16:1ω5) and AMF/saprotrophic fungi ratio were found for the B3HAM treatment. Permutation test based on DGGE data confirmed a similar trend, with most significant variations in both bacterial and fungal community structures induced by inoculation of B2 or B3 in combination with HA and M, especially in B3HAM. Conclusions The two community-based datasets indicated changes in the soil microbiome of maize induced by inoculation of B2 or B3 alone or when combined with humic acids and mycorrhizal inoculum, leading to positive effects on plant growth and improved nutrient uptake. Our study implies that appropriate and innovative agricultural management, enhancing the potential contribution of beneficial soil microorganisms as AMF, may result in an improved nutrient use efficiency in plants.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


2021 ◽  
Author(s):  
Sally Diatta ◽  
Hassna Mboup-Founoune ◽  
Sidy Diakhaté ◽  
Diégane Diouf

<p>Our planet is marked by significant climatic variations, particularly with the warming of temperatures and the variation in rainfall. In sub-Saharan Africa, the impacts of climate change are more pronounced because agriculture is highly dependent on climate, hence its vulnerability to climate variability (Vanluwe et al., 2011). In the context of changing environmental conditions, the use of innovative agricultural practices to contribute to plant adaptation is necessary to support food security challenges. Agroecological practices to improve crop yields and sustainable soil fertility management. Soil is the main reservoir of biodiversity as it hosts a very high diversity of interacting living species, which can be distinguished according to their size, macrofauna, mesofauna and microorganisms that constitute a particularly important component of soil (Brady and Weil, 2002), particularly for the provision of ecosystem services to humans. This work is therefore interested in studying the contribution of arbuscular mycorrhizal fungi (AMF) to the growth of millet (<em>Pennisetum glaucum</em>) under warmer temperature conditions and the behaviour of microbial community in soil of millet growing.</p><p>Millet is grown in a plant climate chamber and inoculated with a selected mycorrhizal strain.  These millet growing conditions were carried out in two different temperatures: 32°C (normal temperature) and 37°C (warmer temperature).</p><p>The results showed that in conditions of warmer temperature the inoculation induced a significant vegetative growth of millet even with a low intensity of mycorrhization and so it improves microbial nutrient mineralization mediate vegetation growth.</p><p>In soil of millet growing, a significant increase in microbial biomass with 42.7 in warmer temperature condition compared to control temperature 16.7. Results of DGGE shows also a soil abundance and SMB diversity of the total fungal community was noted under warmer temperature condition.</p><p>This study showed that climate variation may affect soil symbiosis but not the potential for promoting plant growth of fungi. The use of arbuscular mycorrhizal fungi on the one hand as a biofertilizer can be an alternative in the context of reducing chemical inputs in agriculture and developing ecologically intensive agriculture (EIA) and on the other hand an adaptive practice  to apprehend the predicted climate changes.</p>


PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e102838 ◽  
Author(s):  
Saad El-Din Hassan ◽  
Terrence H. Bell ◽  
Franck O. P. Stefani ◽  
David Denis ◽  
Mohamed Hijri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document