Increased maize growth and P uptake promoted by arbuscular mycorrhizal fungi coincide with higher foliar herbivory and larval biomass of the Fall Armyworm Spodoptera frugiperda

Mycorrhiza ◽  
2019 ◽  
Vol 29 (6) ◽  
pp. 615-622 ◽  
Author(s):  
Raúl Omar Real-Santillán ◽  
Ek del-Val ◽  
Rocío Cruz-Ortega ◽  
Hexon Ángel Contreras-Cornejo ◽  
Carlos Ernesto González-Esquivel ◽  
...  
2021 ◽  
Vol 1 ◽  
Author(s):  
Bhupinder Singh Jatana ◽  
Christopher Kitchens ◽  
Christopher Ray ◽  
Patrick Gerard ◽  
Nishanth Tharayil

Phosphorus (P) is the second most important mineral nutrient for plant growth and plays a vital role in maintaining global food security. The natural phosphorus reserves [phosphate rock (PR)] are declining at an unprecedented rate, which will threaten the sustainable food supply in near future. Rendered animal byproducts such as meat and bone meal (MBM), could serve as a sustainable alternative to meet crop phosphorus demand. Even though nitrogen (N) from MBM is readily mineralized within a few days, >75% of the P in MBM is present as calcium phosphate that is sparingly available to plants. Thus, application of MBM with the aim of meeting crop N demand could result in buildup of P reserves in soil, which necessitates the need to improve the P mobilization from MBM to achieve higher plant P use efficiency. Here, we tested the potential of two microbial inoculum-arbuscular mycorrhizal fungi (AMF) and P solubilizing fungi (Penicillium bilaiae), in improving the mobilization of P from MBM and the subsequent P uptake by maize (Zea mays). Compared to the non-inoculated MBM control, the application of P. bilaiae increased the P mobilization from MBM by more than two-fold and decreased the content of calcium bound P in the soil by 26%. However, despite this mobilization, P. bilaiae did not increase the tissue content of P in maize. On the other hand, AMF inoculation with MBM increased the plant root, shoot biomass, and plant P uptake as compared to non-inoculated control, but did not decrease the calcium bound P fraction of the soil, indicating there was limited P mobilization. The simultaneous application of both AMF and P. bilaiae in association with MBM resulted in the highest tissue P uptake of maize with a concomitant decrease in the calcium bound P in the soil, indicating the complementary functional traits of AMF and P. bilaiae in plant P nutrition from MBM. Arbuscular mycorrhizal fungi inoculation with MBM also increased the plant photosynthesis rate (27%) and root phosphomonoesterase activity (40%), which signifies the AMF associated regulation of plant physiology. Collectively, our results demonstrate that P mobilization and uptake efficiency from MBM could be improved with the combined use of arbuscular mycorrhizal fungi and P. bilaiae.


2001 ◽  
Vol 4 (3) ◽  
pp. 249-254 ◽  
Author(s):  
Tomomi Nakamoto ◽  
Junko Yamagishi ◽  
Hiroshi Oyaizu ◽  
Tomoya Funahashi ◽  
Emmanuel Frossard ◽  
...  

2013 ◽  
Vol 281 ◽  
pp. 664-669
Author(s):  
En Wu ◽  
Guo Rong Xin ◽  
Kazuo Sugawara

With the aggravation of volcanic ash Andosol acidification, artificial forage grass Dactylis glomerata L. gradual degradation, replaced by weed plant Anthoxanthum odoratum L., but the mechanism is unclear. In order to reveal the mechanism, this study used Andosol soil as matrix, explored the effects of arbuscular mycorrhizal fungi on D. glomerata and A. odoratum at different pH gradients in acidic Andosol by glasshouse experiment. The results show that the mycorrhizal colonization of D. glomerata strongly affected by soil pH, but the A. odoratum was not yet. The mycorrhizal symbiosis led to a positive effect on growth and P uptake of D. glomerata and A. odoratum. Consider to invasion and expansion of A. odoratum in severity acidic pasture is origin of this specificity on arbuscular mycorrhizal symbiosis in acidic soil other than D. glomerata.


2013 ◽  
Vol 34 (4) ◽  
pp. 841-848 ◽  
Author(s):  
Ezekiel Mugendi Njeru ◽  
Luciano Avio ◽  
Cristiana Sbrana ◽  
Alessandra Turrini ◽  
Gionata Bocci ◽  
...  

Author(s):  
J. Diane Knight

Abstract Two fungal inoculants are commercially available in Canada and the USA that target improving plant access to soil phosphorus (P). Arbuscular mycorrhizal fungi and Penicillium bilaiae were used to inoculate wheat, lentil and flax grown in an organically-managed and a conventionally-managed soil. A second crop was grown after freezing the soil to evaluate if the inoculants carried over to a second crop. Crops in the organically managed soil were smaller and took up less P than the same crop in the conventionally managed soil. Inoculation with either inoculant improved shoot growth and P uptake in wheat grown in the organically-managed soil and in lentil grown in the conventionally-managed soil. Co-application of the inoculants was never superior to the single inoculants. Carry-over effects were slight and inconsistent.


Sign in / Sign up

Export Citation Format

Share Document