Extension of MF radar tidal measurements to E-region heights (95–125 km): Saskatoon (52°N, 107°W), Canada

1994 ◽  
Vol 12 (4) ◽  
pp. 333
Author(s):  
S. P. Namboothiri ◽  
A. H. Manson ◽  
C. E. Meek
Keyword(s):  
E Region ◽  
2002 ◽  
Vol 64 (12-14) ◽  
pp. 1445-1453 ◽  
Author(s):  
T.K Ramkumar ◽  
S Gurubaran ◽  
R Rajaram

1994 ◽  
Vol 12 (4) ◽  
pp. 333-341
Author(s):  
S. P. Namboothiri ◽  
A. H. Manson ◽  
C. E. Meek

Abstract. Efforts have been made to extend the MF radar tidal profiles to E-region heights. The totally reflected MF radar echoes from E-region heights during daytime are known to be group-retarded and the corresponding wind and tidal data will have associated height discrepancies. The estimation of the E-region real heights (Namboothiri et al., 1993), and the elimination of the data for which the group retardation is significant, are selected as the basic criteria to extend the tidal profiles to 100-125 km. The analysis of the quiet (Ap<19) days of the winter and summer seasons of 1988/89 shows that the tidal propagation continues to higher altitudes with some changes in their pattern, e.g. longer wavelengths, compared to that in the lower altitudes. Comparison with the model profiles shows some resemblance and some disagreements. The reliability of the MF radar tidal measurements of E-region heights and the propagation of tides in this region have been discussed in the light of existing theories and other experimental observations. It is concluded that, based on the initial studies with UHF and MF systems and within the limits of the available theories, the information on tides presented here for the 100-125 km region using the MF radar observations is useful. Suggestions for future work in this direction are also given.


2007 ◽  
Vol 34 (6) ◽  
Author(s):  
S. Gurubaran ◽  
R. Dhanya ◽  
S. Sathishkumar ◽  
B. Paramasivan

2005 ◽  
Vol 32 (23) ◽  
Author(s):  
R. J. Morris ◽  
D. A. Holdsworth ◽  
D. J. Murphy ◽  
D. M. Monselesan

2008 ◽  
Vol 26 (8) ◽  
pp. 2459-2470 ◽  
Author(s):  
R. Dhanya ◽  
S. Gurubaran ◽  
K. Emperumal

Abstract. The spaced antenna medium frequency (MF) radar at Tirunelveli (8.7° N, 77.8° E, geographic; 1.7° N, magnetic dip), the only one of its kind currently operating close to the magnetic equator, has provided an opportunity to investigate the electrodynamical processes related to the equatorial electrojet (EEJ) and their influence on the radar scatterers at medium frequencies in the lower E-region heights (90–98 km). Making use of the full correlation analysis that enables determination of useful geometrical parameters from the ground diffraction pattern, the present work delineates for the first time the characteristics of the radar scatterers during the occurrences of equatorial sporadic E (Esq) and blanketing sporadic E (Esb) noticed in simultaneous ionospheric sounding records at Tirunelveli. The ground magnetometer data provide indirect information on the strength of the EEJ and afternoon reverse EEJ or counterelectrojet (CEJ). The results presented in this work also reveal the height dependence of the radar echo intensity and some of the geometrical parameters at certain times, thus clearly bringing out the complex interplay of various physical processes in the probing region.


1997 ◽  
Vol 15 (9) ◽  
pp. 1111-1122 ◽  
Author(s):  
W. K. Hocking

Abstract. Radars have been used successfully for many years to measure atmospheric motions over a wide range of altitudes, from ground level up to heights of several hundred kilometres into the ionosphere. In this paper we particularly wish to concentrate on the accuracy of these measurements for winds in the middle atmosphere (i.e. 10–100-km altitude). We begin by briefly reviewing the literature relating to comparisons between radar methods and other techniques. We demonstrate where the radar data are most and least reliable and then, in parallel with a discussion about the basic principles of the method, discuss why these different regimes have the different accuracies and precisions they do. This discussion is used to highlight the strengths and weaknesses of radar methods. Issues like radar volume, aspect sensitivity, gravity wave effects and scatterer intermittency in producing wind biases, and the degree by which the intermittent generation of scatterers at quasi-random points in space could skew the radar measurements, are all considered. We also investigate the possibility that MF radar techniques can be contaminated by E-region scatter to heights as low as 92–95-km altitude (i.e. up to 8–10 km below the ionospheric peak echo). Within all these comments, however, we also recognize that radar methods still represent powerful techniques which have an important future at all levels of the atmosphere.


2016 ◽  
Vol 68 (1) ◽  
Author(s):  
Juliano Moro ◽  
Clezio Marcos Denardini ◽  
Laysa Cristina Araújo Resende ◽  
Sony Su Chen ◽  
Nelson Jorge Schuch

2017 ◽  
Vol 122 (12) ◽  
pp. 12,517-12,533 ◽  
Author(s):  
J. Moro ◽  
L. C. A. Resende ◽  
C. M. Denardini ◽  
J. Xu ◽  
I. S. Batista ◽  
...  

1953 ◽  
Vol 31 (2) ◽  
pp. 171-181 ◽  
Author(s):  
D. W. R. McKinley ◽  
Peter M. Millman

In the course of the Ottawa meteor program some unusual echoes have been detected on 33 Mc. Echoes from the aurora are discussed and correlated with visual observations. Two mechanisms of radio reflections from the aurora have been proposed but the data here presented are insufficient to favor one over the other. On Aug. 4, 1948, six extremely long duration meteor echoes were observed which may have been due to abnormal ionospheric conditions. From time to time since August, 1948, a weak semipermanent echo has been recorded, usually appearing at a range of about 80 km., and enduring up to an hour. It is suggested that this echo is due to back-scatter from the same sources in the lower E-region that are presumed to be responsible for long-range very high frequency propagation.


Sign in / Sign up

Export Citation Format

Share Document