scholarly journals Comparison of F-region electron density observations by satellite radio tomography and incoherent scatter methods

1996 ◽  
Vol 14 (12) ◽  
pp. 1422 ◽  
Author(s):  
T. Nygrén ◽  
M. Markkanen ◽  
M. Lehtinen ◽  
E. D. Tereshchenko ◽  
B. Z. Khudukon ◽  
...  
2006 ◽  
Vol 24 (5) ◽  
pp. 1333-1342 ◽  
Author(s):  
M. Milla ◽  
E. Kudeki

Abstract. The ALTAIR UHF radar was used in an incoherent scatter experiment to observe the low-latitude ionosphere during the Equis 2 rocket campaign. The measurements provided the first high-resolution electron density maps of the low-latitude D- and E-region in the Pacific sector and also extended into the F-region and topside ionosphere. Although the sampling frequency was well below the Nyquist frequency of F-region returns, we were able to estimate Te / Ti ratio and infer unbiased electron density estimates using a regularized inversion technique described here. The technique exploits magnetic aspect angle dependence of ISR cross-section for Te>Ti.


2000 ◽  
Vol 18 (12) ◽  
pp. 1630-1634 ◽  
Author(s):  
N. K. Sethi ◽  
V. K. Pandey

Abstract. Arecibo (18.4 N, 66.7 W) incoherent scatter (IS) observations of electron density N(h) are compared with the International Reference Ionosphere (IRI-95) during midday (10–14 h), for summer, winter and equinox, at solar maximum (1981). The N(h) profiles below the F2 peak, are normalized to the peak density NmF2 of the F region and are then compared with the IRI-95 model using both the standard B0 (old option) and the Gulyaeva-B0 thickness (new option). The thickness parameter B0 is obtained from the observed electron density profiles and compared with those obtained from the IRI-95 using both the options. Our studies indicate that during summer and equinox, in general, the values of electron densities at all the heights given by the IRI model (new option), are generally larger than those obtained from IS measurements. However, during winter, the agreement between the IRI and the observed values is reasonably good in the bottom part of the F2 layer but IRI underestimates electron density at F1 layer heights. The IRI profiles obtained with the old option gives much better results than those generated with the new option. Compared to the observations, the IRI profiles are found to be much thicker using Gulyaeva-B0 option than using standard B0.Key words: Ionosphere (modelling and forecasting)


1997 ◽  
Vol 15 (3) ◽  
pp. 314-326 ◽  
Author(s):  
A. Mikhailov ◽  
K. Schlegel

Abstract. A theoretical self-consistent method for the description of daytime Ne(h) profiles in the ionospheric F region measured by EISCAT is proposed. It is based on the use of a theoretical F-region model and measured electron density, Ne(h), electron, Te(h), and ion temperature, Ti(h), and field-aligned plasma drift Vl(h) profiles. The method describes the observed Ne(h) profile with high accuracy for quiet and disturbed conditions. Two versions of the method are considered: in the first the exospheric temperature Tex is derived from a procedure minimizing [log(Ne(h)obs / Ne(h)cal]2, in the second Tex is deduced from the ion energy conservation in the F region. The method allows us to infer from the incoherent-scatter observations: concentrations of atomic oxygen, [O], molecular oxygen, [O2], molecular nitrogen, [N2] the vertical plasma drift, W, the exospheric temperature. Tex, and the shape parameter S in the neutral temperature profile. The ratio ([O+]/Ne) calculated by the theoretical model is used to correct Te(h), Ti(h) and Ne(h) profiles routinely measured with EISCAT which are known to depend strongly on the actual applied ion-composition model. Such a correction is especially important for geomagnetically disturbed periods when the F region is strongly enriched with molecular ions. We conclude that four of the six thermospheric parameters, namely [O], [N2], W and Tex can be confidently inferred from the EISCAT observations, while the other two derived parameters, [O2] ans S are less reliable. The method can be used for the analysis of long-term (seasonal, solar cycle) as well as for day-to-day variations of the thermospheric parameters and the F-region ion composition using daytime incoherent-scatter observations.


1996 ◽  
Vol 14 (12) ◽  
pp. 1422-1428 ◽  
Author(s):  
T. Nygrén ◽  
M. Markkanen ◽  
M. Lehtinen ◽  
E. D. Tereshchenko ◽  
B. Z. Khudukon ◽  
...  

Abstract. In November 1995 a campaign of satellite radiotomography supported by the EISCAT incoherent scatter radar and several other instruments was arranged in Scandinavia. A chain of four satellite receivers extending from the north of Norway to the south of Finland was installed approximately along a geomagnetic meridian. The receivers carried out difference Doppler measurements using signals from satellites flying along the chain. The EISCAT UHF radar was simultaneously operational with its beam swinging either in geomagnetic or in geographic meridional plane. With this experimental set-up latitudinal scans of F-region electron density are obtained both from the radar observations and by tomographic inversion of the phase observations given by the difference Doppler experiment. This paper shows the first results of the campaign and compares the electron densities given by the two methods.


2017 ◽  
Vol 35 (5) ◽  
pp. 1143-1149
Author(s):  
Nickolay Ivchenko ◽  
Nicola M. Schlatter ◽  
Hanna Dahlgren ◽  
Yasunobu Ogawa ◽  
Yuka Sato ◽  
...  

Abstract. Photo-electrons and secondary electrons from particle precipitation enhance the incoherent scatter plasma line to levels sufficient for detection. When detectable the plasma line gives accurate measure of the electron density and can potentially be used to constrain incoherent scatter estimates of electron temperature. We investigate the statistical occurrence of plasma line enhancements with data from the high-latitude EISCAT Svalbard Radar obtained during the International Polar Year (IPY, 2007–2008). A computationally fast method was implemented to recover the range-frequency dependence of the plasma line. Plasma line backscatter strength strongly depends on time of day, season, altitude, and geomagnetic activity, and the backscatter is detectable in 22.6 % of the total measurements during the IPY. As expected, maximum detection is achieved when photo-electrons due to the Sun's EUV radiation are present. During summer daytime hours the occurrence of detectable plasma lines at altitudes below the F-region peak is up to 90 %. During wintertime the occurrence is a few percent. Electron density profiles recovered from the plasma line show great detail of density variations in height and time. For example, effects of inertial gravity waves on the electron density are observed.


1977 ◽  
Vol 20 (12) ◽  
pp. 1267-1270 ◽  
Author(s):  
Yu. A. Ignat'ev ◽  
Z. N. Krotova ◽  
�. E. Mityakova

Sign in / Sign up

Export Citation Format

Share Document