scholarly journals Vertebral deformity arising from an accelerated “creep” mechanism

2012 ◽  
Vol 21 (9) ◽  
pp. 1684-1691 ◽  
Author(s):  
Jin Luo ◽  
Phillip Pollintine ◽  
Edward Gomm ◽  
Patricia Dolan ◽  
Michael A. Adams
2013 ◽  
Vol 747-748 ◽  
pp. 804-809 ◽  
Author(s):  
Li Wu Jiang ◽  
Shu Suo Li ◽  
Mei Ling Wu

The creep behaviors of a Ni3Al-base single crystal superalloy IC6SX prepared by spiral grain selection method was studied systematically under the testing condition of 760/540MPa. The microstructure evolution, movement of dislocations, formation of the dislocation networks and dislocation configuration during the creep process were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the creep performance of the single crystal alloy IC6SX is excellent under 760/540MPa. The experimental results showed that the creep curve of the Ni3Al-base single crystal superalloy IC6SX was divided into three stages, including decelerating creep stage, steady-state creep stage and accelerated creep stage. The microstructure and the dislocation configuration were different at different stage during the creep and the raft microstructure has not been formed. The creep mechanism was main slipping characterized by dislocation glide mechanism.


1989 ◽  
Vol 23 (3) ◽  
pp. 215-227 ◽  
Author(s):  
P. Hoffmeyer ◽  
R. W. Davidson
Keyword(s):  

2021 ◽  
pp. 108128652110258
Author(s):  
Yi-Ying Feng ◽  
Xiao-Jun Yang ◽  
Jian-Gen Liu ◽  
Zhan-Qing Chen

The general fractional operator shows its great predominance in the construction of constitutive model owing to its agility in choosing the embedded parameters. A generalized fractional viscoelastic–plastic constitutive model with the sense of the k-Hilfer–Prabhakar ( k-H-P) fractional operator, which has the character recovering the known classical models from the proposed model, is established in this article. In order to describe the damage in the creep process, a time-varying elastic element [Formula: see text] is used in the proposed model with better representation of accelerated creep stage. According to the theory of the kinematics of deformation and the Laplace transform, the creep constitutive equation and the strain of the modified model are established and obtained. The validity and rationality of the proposed model are identified by fitting with the experimental data. Finally, the influences of the fractional derivative order [Formula: see text] and parameter k on the creep process are investigated through the sensitivity analyses with two- and three-dimensional plots.


1998 ◽  
Vol 63 (1) ◽  
pp. 1-4 ◽  
Author(s):  
E. M. C. Lau ◽  
J. Woo ◽  
H. Chan ◽  
M. K. F. Chan ◽  
J. Griffith ◽  
...  

2014 ◽  
Vol 59 (4) ◽  
pp. 1559-1563 ◽  
Author(s):  
M. Ciesla ◽  
M. Manka ◽  
P. Gradon ◽  
F. Binczyk

Abstract The study assesses the impact of surface and bulk modification and filtration during pouring on a durability under accelerated creep conditions of casts made of IN-713C and MAR-247 nickel superalloys scrap used for manufacturing of aircraft engine parts. The impact of solutionizing (1185°C/2 h) with subsequent ageing (870°C/20 h) on the creep resistance of a casting made from MAR-247 coarse-grained superalloy was also examined. Morphological structure parameters were determined with the use of Met-Ilo software. Macrostructure analysis of casts showed very significant impact of surface modification treatment. Creep test results clearly showed that coarse grained samples of IN-713C and MAR-247 superalloys have higher creep resistance. Moreover alloy MAR-247 had higher creep durability after heat treatment compared to as-cast state.


2017 ◽  
Vol 21 (5) ◽  
pp. 273-283
Author(s):  
Noppakorn Phuraya ◽  
Isaratat Phung-on ◽  
Jongkol Srithorn

Sign in / Sign up

Export Citation Format

Share Document