scholarly journals Effect of Heat Treatment on Properties of INCONEL 617 Investigated in Accelerated Creep Testing

2017 ◽  
Vol 21 (5) ◽  
pp. 273-283
Author(s):  
Noppakorn Phuraya ◽  
Isaratat Phung-on ◽  
Jongkol Srithorn
Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 872
Author(s):  
Mónica Preciado ◽  
Pedro Bravo ◽  
José Calaf ◽  
Daniel Ballorca

During creep, magnesium alloys undergo microstructural changes due to temperature and stress. These alterations are associated with the evolution of the present phases at a microstructural level, creating different strain rates during primary and tertiary creep, and with the stability of the inter-metallic phase Mg17Al12 formed at these temperatures. In this paper, the results of creep testing of high-pressure die-cast AZ91 magnesium alloys are reported. During creep, continuous and discontinuous precipitates grow, which influences creep resistance. The creep mechanism that acts at these intermediate temperatures up to 150 °C is termed dislocation climbing. Finally, the influence of the type of precipitates on the creep behavior of alloys is determined by promoting the formation of continuous precipitates by a short heat treatment prior to creep testing.


2019 ◽  
Vol 23 (3 Part A) ◽  
pp. 1539-1545
Author(s):  
Bing Li ◽  
Lian-Ying Zhang ◽  
Yan Li ◽  
Hui-Guang Yin ◽  
Rui-Xue Liu

Stepwise loading-unloading creep testing of concrete with fly ash content of 35%, and 50% was conducted. The time course curve of stepwise creep in fly ash concrete was obtained. Analyses have revealed that it had decelerated creep, constant velocity, and accelerated creep properties. Based on rheological theory, a non-linear viscoelastic-plastic rheological model (MSSB-NVPB) was constructed, and its constitutive relations and creep equations were obtained. Combined with experimental data, the model parameters were determined. The results showed that this model can characterize the creep properties of the fly ash concrete fairly well.


Sign in / Sign up

Export Citation Format

Share Document