A real-time 3D electromagnetic navigation system for percutaneous pedicle screw fixation in traumatic thoraco-lumbar fractures: implications for efficiency, fluoroscopic time, and accuracy compared with those of conventional fluoroscopic guidance

Author(s):  
Yawei Yao ◽  
Xiang Jiang ◽  
Tanjun Wei ◽  
Zhipeng Yao ◽  
Boyu Wu ◽  
...  
BMC Surgery ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Derong Xu ◽  
Shuo Han ◽  
Chao Wang ◽  
Kai Zhu ◽  
Chuanli Zhou ◽  
...  

Abstract Background Uniportal full endoscopic posterolateral transforaminal lumbar interbody fusion (Endo-TLIF) with percutaneous pedicle screw fixation is a promising, minimally invasive method for the treatment of lumbar spondylolisthesis. However, repeated radiation exposure from X-rays and the steep learning curve remain to be improved. Methods This retrospective study explored the effects of electromagnetic navigation on improving Endo-TLIF with percutaneous pedicle screw fixation. Clinical information from 42 patients who had received Endo-TLIF with percutaneous pedicle screw fixation from May 2019 to November 2020 was analyzed retrospectively. The procedures were assisted under electromagnetic navigation. The rate of adjustment for guide wires, frequency of X-ray exposure, operative time, accuracy of pedicle screw location, and clinical outcomes were recorded. Results The mean follow-up for 42 patients was 11.9 ± 3.1 months. The mean age of the patients was 56.1 ± 9.26 years, with a female/male ratio of 25:17. According to postoperative CT scans and 3D reconstructions, the excellent and good rate of pedicle screws was 96.4%. The rate of adjustment for guide wires under the assistance of electromagnetic navigation was 1.78%, and the frequency of X-ray exposure was 8.27 ± 1.83. The operative time was 167.25 ± 28.16 min, including the duration of guide wire insertion (14.63 ± 5.45 min) and duration of decompression and cage placement (75.43 ± 13.97 min). The duration of hospitalization after operation was 2.59 ± 1.16 days. The preoperative VAS score was 7.51 ± 1.91, and the preoperative ODI was 82.42 ± 8.7%. At the last follow-up, the VAS score was 2.09 ± 0.59, and the ODI was 11.09 ± 3.2%. There were statistically significant improvements in the VAS score and ODI in all patients at the follow-up (p < 0.05). Conclusions Electromagnetic navigation can provide accurate positioning and guidance in real time, which improves the surgical efficiency of percutaneous pedicle screw placement and endoscopic decompression in Endo-TLIF with reduced radiation exposures.


2021 ◽  
Vol 9 ◽  
pp. 2050313X2098779
Author(s):  
Shota Miyoshi ◽  
Tadao Morino ◽  
Haruhiko Takeda ◽  
Hiroshi Nakata ◽  
Masayuki Hino ◽  
...  

A 74-year-old man developed bilateral lower limb spastic paresis. He was diagnosed with thoracic spondylotic myelopathy presumably caused by mechanical stress that was generated in the intervertebral space (T1-T2) between a vertebral bone bridge (C5-T1) due to diffuse idiopathic skeletal hyperostosis after anterior fixation of the lower cervical spine and a vertebral bone bridge (T2-T7) due to diffuse idiopathic skeletal hyperostosis in the upper thoracic spine. Treatment included posterior decompression (T1-T2 laminectomy) and percutaneous pedicle screw fixation at the C7-T4 level. Six months after surgery, the patient could walk with a cane, and the vertebral bodies T1-T2 were bridged without bone grafting. For thoracic spondylotic myelopathy associated with diffuse idiopathic skeletal hyperostosis, decompression and percutaneous pedicle screw fixation are effective therapies.


2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Ioannis Siasios ◽  
John Pollina ◽  
Vassilios G. Dimopoulos

Diffuse idiopathic skeletal hyperostosis (DISH) is a noninflammatory degenerative disease that affects multiple spine levels and, in combination with osteoporosis, makes vertebrae more prone to fractures, especially in elderly people. We describe a rare case of thoracic fracture in an ankylosed spine in which hemoptysis was the only clinical sign. The patient (age in the early 80s) presented with chest pain and a cough associated with hemoptysis. The patient had no complaints of back pain and no neurological symptoms. Computed tomography (CT) angiography of the chest revealed changes consistent with DISH, with fractures at the T8 and T9 vertebra as well as lung hemorrhage or contusion in the right lung base. CT and magnetic resonance imaging of the thoracic spine showed similar findings, with a recent T8-T9 fracture and DISH changes. The patient underwent percutaneous pedicle screw fixation from T7 to T11 and remained neurologically intact with an uneventful postoperative course.


2016 ◽  
Vol 02 (04) ◽  
pp. e131-e138 ◽  
Author(s):  
Nitin Agarwal ◽  
Phillip Choi ◽  
Raymond Sekula

Introduction Traumatic thoracolumbar burst fracture is a common pathology without a clear consensus on best treatment approach. Minimally invasive approaches are being investigated due to potential benefits in recovery time and morbidity. We examine long-term resolution of symptoms of traumatic thoracolumbar burst fractures treated with percutaneous posterior pedicle screw fixation. Methods Retrospective clinical review of seven patients with spinal trauma who presented with thoracolumbar burst fracture from July 2012 to April 2013 and were treated with percutaneous pedicle screw fixation. Electronic patient charts and radiographic imaging were reviewed for initial presentation, fracture characteristics, operative treatment, and postoperative course. Results The patients had a median age of 29 years (range 18 to 57), and 57% were men. The median Thoracolumbar Injury Classification and Severity Scale score was 4 (range 2 to 9). All patients had proper screw placement and uneventful postoperative courses given the severity of their individual traumas. Five of seven patients were reached for long-term follow-up of greater than 28 months. Six of seven patients had excellent pain control and stability at their last follow-up. One patient required revision surgery for noncatastrophic hardware failure. Conclusion Percutaneous pedicle screw fixation for the treatment of unstable thoracolumbar burst fracture may provide patients with durable benefits and warrants further investigation.


2018 ◽  
Vol 16 (4) ◽  
pp. E121-E121 ◽  
Author(s):  
Corey T Walker ◽  
Jakub Godzik ◽  
David S Xu ◽  
Nicholas Theodore ◽  
Juan S Uribe ◽  
...  

Abstract Lateral interbody fusion has distinct advantages over traditional posterior approaches. When adjunctive percutaneous pedicle screw fixation is required, placement from the lateral decubitus position theoretically increases safety and improves operative efficiency by obviating the need for repositioning. However, safe cannulation of the contralateral, down-side pedicles remains technically challenging and often prohibitive. In this video, we present the case of a 59-yr-old man with refractory back pain and bilateral lower extremity radiculopathy that was worse on the left than right side. The patient provided written informed consent before undergoing treatment. We performed minimally invasive single-position lateral interbody fusion with robotic (ExcelsiusGPS, Globus Medical Inc, Audubon, Pennsylvania) bilateral percutaneous pedicle screw fixation for the treatment of asymmetric disc degeneration, dynamic instability, and left paracentral disc herniation with corresponding stenosis at the L3-4 level. A left-sided minimally invasive transpsoas lateral interbody graft was placed with fluoroscopic guidance. Without changing the position of the patient or breaking the sterile field, an intraoperative cone-beam computed tomography image was obtained for navigational screw placement with stereotactic trackers in the iliac spine. Screw trajectories were planned using the robotic navigation software and were placed percutaneously in the bilateral L3 and L4 pedicles using the robotic arm. Concomitant lateral fluoroscopy may be used if desired to ensure the fidelity of the robotic guidance. The patient recovered well postoperatively and was discharged home within 36 h, without complication. Single-position lateral interbody fusion and percutaneous pedicle screw fixation can be accomplished using robotic-assisted navigation and pedicle screw placement. Used with permission from Barrow Neurological Institute.


Sign in / Sign up

Export Citation Format

Share Document