scholarly journals The relationship between gut microbiota, short-chain fatty acids and type 2 diabetes mellitus: the possible role of dietary fibre

Author(s):  
Dominic Salamone ◽  
Angela Albarosa Rivellese ◽  
Claudia Vetrani

AbstractGut microbiota and its metabolites have been shown to influence multiple physiological mechanisms related to human health. Among microbial metabolites, short-chain fatty acids (SCFA) are modulators of different metabolic pathways. On the other hand, several studies suggested that diet might influence gut microbiota composition and activity thus modulating the risk of metabolic disease, i.e. obesity, insulin resistance and type 2 diabetes. Among dietary component, dietary fibre may play a pivotal role by virtue of its prebiotic effect on fibre-fermenting bacteria, that may increase SCFA production. The aim of this review was to summarize and discuss current knowledge on the impact of dietary fibre as modulator of the relationship between glucose metabolism and microbiota composition in humans. More specifically, we analysed evidence from observational studies and randomized nutritional intervention investigating the relationship between gut microbiota, short-chain fatty acids and glucose metabolism. The possible mechanisms behind this association were also discussed.

2010 ◽  
Vol 35 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Joshua Tarini ◽  
Thomas M.S. Wolever

It is thought that diets high in dietary fibre are associated with reduced risk for type 2 diabetes, at least in part because the short-chain fatty acids (SCFAs) produced during the colonic fermentation of fibre beneficially influence circulating concentrations of free-fatty acids (FFAs) and gut hormones involved in the regulation of blood glucose and body mass. However, there is a paucity of data showing this sequence of events in humans. Thus, our objective was to determine the effect of the fermentable fibre inulin on postprandial glucose, insulin, SCFA, FFA, and gut hormone responses in healthy subjects. Overnight fasted healthy subjects (n = 12) were studied for 6 h after consuming 400 mL drinks, containing 80 g high-fructose corn syrup (80HFCS), 56 g HFCS (56HFCS), or 56 g HFCS plus 24 g inulin (Inulin), using a randomized, single-blind, crossover design. A standard lunch was served 4 h after the test drink. Glucose and insulin responses after Inulin did not differ significantly from those after 80HFCS or 56HFCS. Serum acetate, propionate, and butyrate were significantly higher after Inulin than after HFCS drinks from 4–6 h. FFAs fell at a similar rate after all 3 test drinks, but were lower after Inulin than after 56HFCS at 4 h (0.40 ± 0.06 vs. 0.51 ± 0.06 mmol·L–1; p < 0.05). Compared with 56HFCS, Inulin significantly increased plasma glucagon-like peptide-1 concentrations at 30 min, and reduced ghrelin at 4.5 h and 6 h. The results are consistent with the hypothesis that dietary fibre increases the production of colonic SCFAs, which may reduce type 2 diabetes risk by reducing postprandial FFAs and favorably affecting gut hormones, which regulate food intake.


2020 ◽  
Vol 59 (7) ◽  
pp. 3325-3338 ◽  
Author(s):  
Eline Birkeland ◽  
Sedegheh Gharagozlian ◽  
Kåre I. Birkeland ◽  
Jørgen Valeur ◽  
Ingrid Måge ◽  
...  

Abstract Purpose Compared to a healthy population, the gut microbiota in type 2 diabetes presents with several unfavourable features that may impair glucose regulation. The aim of this study was to evaluate the prebiotic effect of inulin-type fructans on the faecal microbiota and short-chain fatty acids (SCFA) in patients with type 2 diabetes. Methods The study was a placebo controlled crossover study, where 25 patients (15 men) aged 41–71 years consumed 16 g of inulin-type fructans (a mixture of oligofructose and inulin) and 16-g placebo (maltodextrin) for 6 weeks in randomised order. A 4-week washout separated the 6 weeks treatments. The faecal microbiota was analysed by high-throughput 16S rRNA amplicon sequencing and SCFA in faeces were analysed using vacuum distillation followed by gas chromatography. Results Treatment with inulin-type fructans induced moderate changes in the faecal microbiota composition (1.5%, p = 0.045). A bifidogenic effect was most prominent, with highest positive effect on operational taxonomic units (OTUs) of Bifidobacterium adolescentis, followed by OTUs of Bacteroides. Significantly higher faecal concentrations of total SCFA, acetic acid and propionic acid were detected after prebiotic consumption compared to placebo. The prebiotic fibre had no effects on the concentration of butyric acid or on the overall microbial diversity. Conclusion Six weeks supplementation with inulin-type fructans had a significant bifidogenic effect and induced increased concentrations of faecal SCFA, without changing faecal microbial diversity. Our findings suggest a moderate potential of inulin-type fructans to improve gut microbiota composition and to increase microbial fermentation in type 2 diabetes. Trial registration The trial is registered at clinicaltrials.gov (NCT02569684).


2021 ◽  
Vol 9 (A) ◽  
pp. 1148-1155
Author(s):  
Rio Kusuma ◽  
Jaka Widada ◽  
Emy Huriyati ◽  
Madarina Julia

Introduction: Gut microbiota dysbiosis indicated by increased gram-negative bacteria and reduced Firmicutes-producing short chain fatty acids bacteria has been linked with impairment in glucose metabolism. Tempeh is traditional fermented soy food that can stimulate the growth of beneficial bacteria. In Indonesia, some tempeh was produced by adding acidifier that contains lactic acid bacteria. This process may impact the nutrient and anti-dysbiosis activity of tempeh.   Objectives: To evaluate the impact of acidifier on nutrient and gut microbiota profile of diabetic animal model.  Method: Modified tempeh was made by addition of water extract of fermented cassava. Standard and modified tempeh were subjected to proximate analysis and dietary fibre. Diabetic animals were received standard tempeh or modified tempeh diet replacing 15% and 30% of protein in the diet for 4 weeks of intervention. At the end of experiment, caecal content was collected. Short chain fatty acids and microbiota composition were analysed using 16s rDNA next generation sequencing (NGS). Result: There is significant different (p<0.05) on fat, protein, water and dietary fibre content between regular soy tempeh and modified tempeh. There is significant different (p<0.05) on serum glucose and short chain fatty acid composition among group. Diabetic animal has low ratio of Firmicutes/Bacteroidetes. Supplementation of both tempeh increased bacterial diversity, Firmicutes /Bacteroidetes ratio and short chain fatty acids producing bacteria.   Conclusion: Addition of naturally occurred lactic acid bacteria from fermented cassava during tempeh processing improved both nutrient and microbiota composition in the gut of diabetes mellitus.  


2020 ◽  
Vol 99 (11) ◽  
pp. 5883-5895
Author(s):  
Xiudong Liao ◽  
Yuxin Shao ◽  
Guangming Sun ◽  
Yunfeng Yang ◽  
Liyang Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document