Mechanical Behavior of Carbonate Rocks at Crack Damage Stress Equal to Uniaxial Compressive Strength

2009 ◽  
Vol 43 (4) ◽  
pp. 497-503 ◽  
Author(s):  
V. Palchik
2021 ◽  
Vol 11 (22) ◽  
pp. 10653
Author(s):  
Jingwei Gao ◽  
Chao Xu ◽  
Yan Xi ◽  
Lifeng Fan

This study investigated the effects of freezing temperature under freeze-thaw cycling conditions on the mechanical behavior of sandstone. First, the sandstone specimens were subjected to 10-time freeze-thaw cycling treatments at different freezing temperatures (−20, −40, −50, and −60 °C). Subsequently, a series of density, ultrasonic wave, and static and dynamic mechanical behavior tests were carried out. Finally, the effects of freezing temperature on the density, P-wave velocity, stress–strain curves, static and dynamic uniaxial compressive strength, static elastic modulus, and dynamic energy absorption of sandstone were discussed. The results show that the density slightly decreases as temperature decreases, approximately by 1.0% at −60 °C compared with that at 20 °C. The P-wave velocity, static and dynamic uniaxial compressive strength, static elastic modulus, and dynamic energy absorption obviously decrease. As freezing temperature decreases from 20 to −60 °C, the static uniaxial compressive strength, static elastic modulus, dynamic strength, and dynamic energy absorption of sandstone decrease by 16.8%, 21.2%, 30.8%, and 30.7%, respectively. The dynamic mechanical behavior is more sensitive to the freezing temperature during freeze-thawing cycling compared with the static mechanical behavior. In addition, a higher strain rate can induce a higher dynamic strength and energy absorption.


2012 ◽  
Vol 512-515 ◽  
pp. 1953-1956
Author(s):  
Feng Shan Han ◽  
Song Li

Salt rock is think of ideal storage location for oil and natural gas and radioactive waste deposited, interlayer has negative effect on stability of cavern of storage for oil and natural gas and radioactive waste deposited in salt rock, It is difficult to make complete specimen layered salt rock with interlayer. In this paper Based on Rock Failure Process Analysis Code RAFP2D, influence of mudstone interlayer on uniaxial compressive strength of salt rock is investigated by numerical simulation. Numerical simulation shown that when mechanical parameters such as elastic modulus poison’s ratio and uniaxial compressive strength for salt rock and pure mudstone interlayer and content of mudstone interlayer in salt rock are known, compressive strength and mechanical behavior for salt rock with mudstone interlayer can be effectively and accurately analyzed using RFAP2D. The results for numerical simulation are agreement with true physical experiment of salt rock with mudstone interlayer. It should be noticed that the true physical experimental uniaxial compressive strength of rock is in range of 30% mean uniaxial compressive strength of rock element in RFPA2D,in this case the results for numerical simulation can reflect phenomenon and behavior for true physical experiment of salt rock with mudstone interlayer. That provides new method and avenue to analyze and investigate mechanical behavior for multilayer rock mass based on RAFP2D


Sign in / Sign up

Export Citation Format

Share Document