Evidence for fungal sequence contamination in plant transcriptome databases

2019 ◽  
Vol 305 (7) ◽  
pp. 563-568 ◽  
Author(s):  
Gabor L. Igloi
Author(s):  
Sairam Behera ◽  
Adam Voshall ◽  
Etsuko N. Moriyama

2020 ◽  
Vol 117 (35) ◽  
pp. 21785-21795 ◽  
Author(s):  
Susheel Sagar Bhat ◽  
Dawid Bielewicz ◽  
Tomasz Gulanicz ◽  
Zsuzsanna Bodi ◽  
Xiang Yu ◽  
...  

InArabidopsis thaliana, the METTL3 homolog, mRNA adenosine methylase (MTA) introducesN6-methyladenosine (m6A) into various coding and noncoding RNAs of the plant transcriptome. Here, we show that an MTA-deficient mutant (mta) has decreased levels of microRNAs (miRNAs) but accumulates primary miRNA transcripts (pri-miRNAs). Moreover, pri-miRNAs are methylated by MTA, and RNA structure probing analysis reveals a decrease in secondary structure within stem–loop regions of these transcripts inmtamutant plants. We demonstrate interaction between MTA and both RNA Polymerase II and TOUGH (TGH), a plant protein needed for early steps of miRNA biogenesis. Both MTA and TGH are necessary for efficient colocalization of the Microprocessor components Dicer-like 1 (DCL1) and Hyponastic Leaves 1 (HYL1) with RNA Polymerase II. We propose that secondary structure of miRNA precursors induced by their MTA-dependent m6A methylation status, together with direct interactions between MTA and TGH, influence the recruitment of Microprocessor to plant pri-miRNAs. Therefore, the lack of MTA inmtamutant plants disturbs pri-miRNA processing and leads to the decrease in miRNA accumulation. Furthermore, our findings reveal that reduced miR393b levels likely contributes to the impaired auxin response phenotypes ofmtamutant plants.


2010 ◽  
Vol 139 (2) ◽  
pp. 129-143 ◽  
Author(s):  
Lena Nilsson ◽  
Renate Müller ◽  
Tom Hamborg Nielsen

Author(s):  
A T Vivek ◽  
Shailesh Kumar

Abstract Plant transcriptome encompasses numerous endogenous, regulatory non-coding RNAs (ncRNAs) that play a major biological role in regulating key physiological mechanisms. While studies have shown that ncRNAs are extremely diverse and ubiquitous, the functions of the vast majority of ncRNAs are still unknown. With ever-increasing ncRNAs under study, it is essential to identify, categorize and annotate these ncRNAs on a genome-wide scale. The use of high-throughput RNA sequencing (RNA-seq) technologies provides a broader picture of the non-coding component of transcriptome, enabling the comprehensive identification and annotation of all major ncRNAs across samples. However, the detection of known and emerging class of ncRNAs from RNA-seq data demands complex computational methods owing to their unique as well as similar characteristics. Here, we discuss major plant endogenous, regulatory ncRNAs in an RNA sample followed by computational strategies applied to discover each class of ncRNAs using RNA-seq. We also provide a collection of relevant software packages and databases to present a comprehensive bioinformatics toolbox for plant ncRNA researchers. We assume that the discussions in this review will provide a rationale for the discovery of all major categories of plant ncRNAs.


2005 ◽  
Vol 8 (4) ◽  
pp. 517-527 ◽  
Author(s):  
Rebecca Schwab ◽  
Javier F. Palatnik ◽  
Markus Riester ◽  
Carla Schommer ◽  
Markus Schmid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document