scholarly journals Distribution of electric field in patients with obsessive compulsive disorder treated with deep brain stimulation of the bed nucleus of stria terminalis

Author(s):  
Matilda Naesström ◽  
Johannes Johansson ◽  
Marwan Hariz ◽  
Owe Bodlund ◽  
Karin Wårdell ◽  
...  

Abstract Background Deep brain stimulation (DBS) is being investigated as a treatment for therapy-refractory obsessive compulsive disorder (OCD). Many different brain targets are being trialled. Several of these targets such as the ventral striatum (including the nucleus accumbens (NAc)), the ventral capsule, the inferior thalamic peduncle, and the bed nucleus of stria terminalis (BNST)) belong to the same network, are anatomically very close to one another, or even overlap. Data is still missing on how various stimulation parameters in a given target will affect surrounding anatomical areas and impact the clinical outcome of DBS. Methods In a pilot study of eleven participants with DBS of the BNST, we investigate through patient-specific simulation of electric field, which anatomical areas are affected by the electric field, and if this can be related to the clinical results. Our study combined individual patient’s stimulation parameters at 12- and 24-month follow-up with image data from the preoperative MRI and postoperative CT. These data were used to calculate the distribution of electric field and create individual anatomical models of the field of stimulation. Results The individual electric stimulation fields by stimulation in the BNST were similar at both the 12- and 24-month follow-up, involving mainly anterior limb of the internal capsule (ALIC), genu of the internal capsule (IC), BNST, fornix, anteromedial globus pallidus externa (GPe), and the anterior commissure. A statistical significant correlation (p < 0.05) between clinical effect measured by the Yale-Brown Obsessive Compulsive Scale and stimulation was found at the 12-month follow-up in the ventral ALIC and anteromedial GPe. Conclusions Many of the targets under investigation for OCD are in anatomical proximity. As seen in our study, off-target effects are overlapping. Therefore, DBS in the region of ALIC, NAc, and BNST may perhaps be considered to be stimulation of the same target.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Philip E. Mosley ◽  
François Windels ◽  
John Morris ◽  
Terry Coyne ◽  
Rodney Marsh ◽  
...  

AbstractDeep brain stimulation (DBS) is a promising treatment for severe, treatment-resistant obsessive-compulsive disorder (OCD). Here, nine participants (four females, mean age 47.9 ± 10.7 years) were implanted with DBS electrodes bilaterally in the bed nucleus of the stria terminalis (BNST). Following a one-month postoperative recovery phase, participants entered a three-month randomised, double-blind, sham-controlled phase before a twelve-month period of open-label stimulation incorporating a course of cognitive behavioural therapy (CBT). The primary outcome measure was OCD symptoms as rated with the Yale-Brown Obsessive-Compulsive Scale (YBOCS). In the blinded phase, there was a significant benefit of active stimulation over sham (p = 0.025, mean difference 4.9 points). After the open phase, the mean reduction in YBOCS was 16.6 ± 1.9 points (χ2 (11) = 39.8, p = 3.8 × 10−5), with seven participants classified as responders. CBT resulted in an additive YBOCS reduction of 4.8 ± 3.9 points (p = 0.011). There were two serious adverse events related to the DBS device, the most severe of which was an infection during the open phase necessitating device explantation. There were no serious psychiatric adverse events related to stimulation. An analysis of the structural connectivity of each participant’s individualised stimulation field isolated right-hemispheric fibres associated with YBOCS reduction. These included subcortical tracts incorporating the amygdala, hippocampus and stria terminalis, in addition to cortical regions in the ventrolateral and ventromedial prefrontal cortex, parahippocampal, parietal and extrastriate visual cortex. In conclusion, this study provides further evidence supporting the efficacy and tolerability of DBS in the region of the BNST for individuals with otherwise treatment-refractory OCD and identifies a connectivity fingerprint associated with clinical benefit.


Brain ◽  
2020 ◽  
Vol 143 (5) ◽  
pp. 1603-1612 ◽  
Author(s):  
Egill Axfjord Fridgeirsson ◽  
Martijn Figee ◽  
Judy Luigjes ◽  
Pepijn van den Munckhof ◽  
P Richard Schuurman ◽  
...  

Abstract Deep brain stimulation is effective for patients with treatment-refractory obsessive-compulsive disorder. Deep brain stimulation of the ventral anterior limb of the internal capsule rapidly improves mood and anxiety with optimal stimulation parameters. To understand these rapid effects, we studied functional interactions within the affective amygdala circuit. We compared resting state functional MRI data during chronic stimulation versus 1 week of stimulation discontinuation in patients, and obtained two resting state scans from matched healthy volunteers to account for test-retest effects. Imaging data were analysed using functional connectivity analysis and dynamic causal modelling. Improvement in mood and anxiety following deep brain stimulation was associated with reduced amygdala-insula functional connectivity. Directional connectivity analysis revealed that deep brain stimulation increased the impact of the ventromedial prefrontal cortex on the amygdala, and decreased the impact of the amygdala on the insula. These results highlight the importance of the amygdala circuit in the pathophysiology of obsessive-compulsive disorder, and suggest a neural systems model through which negative mood and anxiety are modulated by stimulation of the ventral anterior limb of the internal capsule for obsessive-compulsive disorder and possibly other psychiatric disorders.


Sign in / Sign up

Export Citation Format

Share Document