Estimation of urban heat island intensity using biases in surface air temperature simulated by a nonhydrostatic regional climate model

2012 ◽  
Vol 112 (1-2) ◽  
pp. 351-361 ◽  
Author(s):  
Akihiko Murata ◽  
Hidetaka Sasaki ◽  
Mizuki Hanafusa ◽  
Kazuo Kurihara
Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1543
Author(s):  
Reinhardt Pinzón ◽  
Noriko N. Ishizaki ◽  
Hidetaka Sasaki ◽  
Tosiyuki Nakaegawa

To simulate the current climate, a 20-year integration of a non-hydrostatic regional climate model (NHRCM) with grid spacing of 5 and 2 km (NHRCM05 and NHRCM02, respectively) was nested within the AGCM. The three models did a similarly good job of simulating surface air temperature, and the spatial horizontal resolution did not affect these statistics. NHRCM02 did a good job of reproducing seasonal variations in surface air temperature. NHRCM05 overestimated annual mean precipitation in the western part of Panama and eastern part of the Pacific Ocean. NHRCM05 is responsible for this overestimation because it is not seen in MRI-AGCM. NHRCM02 simulated annual mean precipitation better than NHRCM05, probably due to a convection-permitting model without a convection scheme, such as the Kain and Fritsch scheme. Therefore, the finer horizontal resolution of NHRCM02 did a better job of replicating the current climatological mean geographical distributions and seasonal changes of surface air temperature and precipitation.


2007 ◽  
Vol 20 (2) ◽  
pp. 218-232 ◽  
Author(s):  
Jinhong Zhu ◽  
Xin-Zhong Liang

Abstract The fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5)-based regional climate model (CMM5) capability in simulating the interannual variations of U.S. precipitation and surface air temperature during 1982–2002 is evaluated with a continuous baseline integration driven by the NCEP–Department of Energy (DOE) Second Atmospheric Model Intercomparison Project Reanalysis (R-2). It is demonstrated that the CMM5 has a pronounced downscaling skill for precipitation and temperature interannual variations. The EOF and correlation analyses illustrate that, for both quantities, the CMM5 captures the spatial pattern, temporal evolution, and circulation teleconnections much better than the R-2. In particular, the CMM5 more realistically simulates the precipitation pattern centered in the Northwest, where the representation of the orographic enhancement by the forced uplifting during winter (rainy season) is greatly improved over the R-2. The downscaling skill, however, is sensitive to the cumulus parameterization. This sensitivity is studied by comparing the baseline with a branch summer integration replacing the Grell with the Kain–Fritsch cumulus scheme in the CMM5. The dominant EOF mode of the U.S. summer precipitation interannual variation, identified with the out-of-phase relationship between the Midwest and Southeast in observations, is reproduced more accurately by the Grell than the Kain–Fritsch scheme, which largely underestimates the variation in the Midwest. This pattern is associated with east–west movement of the Great Plains low-level jet (LLJ): a more western position corresponds to a stronger southerly flow bringing more moisture and heavier rainfall in the Midwest and less in the Southeast. The second EOF pattern, which describes the consistent variation over the southern part of the Midwest and the South in observations, is captured better by the Kain–Fritsch scheme than the Grell, whose pattern systematically shifts southward.


Author(s):  
Luxi Jin ◽  
Sebastian Schubert ◽  
Daniel Fenner ◽  
Fred Meier ◽  
Christoph Schneider

Abstract We report the ability of an urban canopy model, coupled with a regional climate model, to simulate energy fluxes, the intra-urban variability of air temperature, urban-heat-island characteristics, indoor temperature variation, as well as anthropogenic heat emissions, in Berlin, Germany. A building energy model is implemented into the Double Canyon Effect Parametrization, which is coupled with the mesoscale climate model COSMO-CLM (COnsortium for Small-scale MOdelling in CLimate Mode) and takes into account heat generation within buildings and calculates the heat transfer between buildings and the urban atmosphere. The enhanced coupled urban model is applied in two simulations of 24-day duration for a winter and a summer period in 2018 in Berlin, using downscaled reanalysis data to a final grid spacing of 1 km. Model results are evaluated with observations of radiative and turbulent energy fluxes, 2-m air temperature, and indoor air temperature. The evaluation indicates that the improved model reproduces the diurnal characteristics of the observed turbulent heat fluxes, and considerably improves the simulated 2-m air temperature and urban heat island in winter, compared with the simulation without the building energy model. Our set-up also estimates the spatio–temporal variation of wintertime energy consumption due to heating with canyon geometry. The potential to save energy due to the urban heat island only becomes evident when comparing a suburban site with an urban site after applying the same grid-cell values for building and street widths. In summer, the model realistically reproduces the indoor air temperature and its temporal variation.


2019 ◽  
Vol 23 (4) ◽  
pp. 277-288 ◽  
Author(s):  
Csenge Dian ◽  
Rita Pongrácz ◽  
Dóra Incze ◽  
Judit Bartholy ◽  
Attila Talamon

2011 ◽  
Vol 6 (1) ◽  
pp. 27-34 ◽  
Author(s):  
R. Hamdi ◽  
H. Van de Vyver

Abstract. In this letter, the Brussels's urban heat island (UHI) effect on the near-surface air temperature time series of Uccle (the national suburban recording station of the Royal Meteorological Institute of Belgium) was estimated between 1955 and 2006 during the summer months. The UHI of Brussels was estimated using both ground-based weather stations and remote sensing imagery combined with a land surface scheme that includes a state-of-the-art urban parameterization, the Town Energy Balance scheme. Analysis of urban warming based on the remote sensing method reveals that the urban bias on minimum air temperature is rising at a higher rate, 2.5 times (2.85 ground-based observed) more, than on maximum temperature, with a linear trend of 0.15 °C (0.19 °C ground-based observed) and 0.06 °C (0.06 °C ground-based observed) per decade respectively. The summer-mean urban bias on the mean air temperature is 0.8 °C (0.9 °C ground-based observed). The results based on remote sensing imagery are compatible with estimates of urban warming based on weather stations. Therefore, the technique presented in this work is a useful tool in estimating the urban heat island contamination in long time series, countering the drawbacks of an ground-observational approach.


2019 ◽  
Vol 12 (4) ◽  
pp. 74-95 ◽  
Author(s):  
Mikhail I. Varentsov ◽  
Mikhail Y. Grishchenko ◽  
Hendrik Wouters

This study compares three popular approaches to quantify the urban heat island (UHI) effect in Moscow megacity in a summer season (June-August 2015). The first approach uses the measurements of the near-surface air temperature obtained from weather stations, the second is based on remote sensing from thermal imagery of MODIS satellites, and the third is based on the numerical simulations with the mesoscale atmospheric model COSMO-CLM coupled with the urban canopy scheme TERRA_URB. The first approach allows studying the canopy-layer UHI (CLUHI, or anomaly of a near- surface air temperature), while the second allows studying the surface UHI (SUHI, or anomaly of a land surface temperature), and both types of the UHI could be simulated by the atmospheric model. These approaches were compared in the daytime, evening and nighttime conditions. The results of the study highlight a substantial difference between the SUHI and CLUHI in terms of the diurnal variation and spatial structure. The strongest differences are found at the daytime, at which the SUHI reaches the maximal intensity (up to 10°С) whereas the CLUHI reaches the minimum intensity (1.5°С). However, there is a stronger consistency between CLUHU and SUHI at night, when their intensities converge to 5–6°С. In addition, the nighttime CLUHI and SUHI have similar monocentric spatial structure with a temperature maximum in the city center. The presented findings should be taken into account when interpreting and comparing the results of UHI studies, based on the different approaches. The mesoscale model reproduces the CLUHI-SUHI relationships and provides good agreement with in situ observations on the CLUHI spatiotemporal variations (with near-zero biases for daytime and nighttime CLUHI intensity and correlation coefficients more than 0.8 for CLUHI spatial patterns). However, the agreement of the simulated SUHI with the remote sensing data is lower than agreement of the simulated CLUHI with in situ measurements. Specifically, the model tends to overestimate the daytime SUHI intensity. These results indicate a need for further in-depth investigation of the model behavior and SUHI–CLUHI relationships in general.


Sign in / Sign up

Export Citation Format

Share Document