scholarly journals Evaluating the Role of Snow Cover in Urban Canopy Layer on the Urban Heat Island in Sapporo, Japan with a Regional Climate Model

2015 ◽  
Vol 93 (5) ◽  
pp. 581-592 ◽  
Author(s):  
Keisuke MORI ◽  
Tomonori SATO
2010 ◽  
Vol 31 (12) ◽  
pp. 1848-1865 ◽  
Author(s):  
K. W. Oleson ◽  
G. B. Bonan ◽  
J. Feddema ◽  
T. Jackson

Author(s):  
Luxi Jin ◽  
Sebastian Schubert ◽  
Daniel Fenner ◽  
Fred Meier ◽  
Christoph Schneider

Abstract We report the ability of an urban canopy model, coupled with a regional climate model, to simulate energy fluxes, the intra-urban variability of air temperature, urban-heat-island characteristics, indoor temperature variation, as well as anthropogenic heat emissions, in Berlin, Germany. A building energy model is implemented into the Double Canyon Effect Parametrization, which is coupled with the mesoscale climate model COSMO-CLM (COnsortium for Small-scale MOdelling in CLimate Mode) and takes into account heat generation within buildings and calculates the heat transfer between buildings and the urban atmosphere. The enhanced coupled urban model is applied in two simulations of 24-day duration for a winter and a summer period in 2018 in Berlin, using downscaled reanalysis data to a final grid spacing of 1 km. Model results are evaluated with observations of radiative and turbulent energy fluxes, 2-m air temperature, and indoor air temperature. The evaluation indicates that the improved model reproduces the diurnal characteristics of the observed turbulent heat fluxes, and considerably improves the simulated 2-m air temperature and urban heat island in winter, compared with the simulation without the building energy model. Our set-up also estimates the spatio–temporal variation of wintertime energy consumption due to heating with canyon geometry. The potential to save energy due to the urban heat island only becomes evident when comparing a suburban site with an urban site after applying the same grid-cell values for building and street widths. In summer, the model realistically reproduces the indoor air temperature and its temporal variation.


2020 ◽  
Vol 59 (4) ◽  
pp. 605-620 ◽  
Author(s):  
Ning An ◽  
Jingjing Dou ◽  
Jorge E. González-Cruz ◽  
Robert D. Bornstein ◽  
Shiguang Miao ◽  
...  

AbstractThe focus of this study is an intense heat episode that occurred on 9–13 July 2017 in Beijing, China, that resulted in severe impacts on natural and human variables, including record-setting daily electricity consumption levels. This event was observed and analyzed with a suite of local and mesoscale instruments, including a high-density automated weather station network, soil moisture sensors, and ground-based vertical instruments (e.g., a wind profiler, a ceilometer, and three radiometers) situated in and around the city, as well as electric power consumption data and analysis data from the U.S. National Centers for Environmental Prediction. The results show that the heat wave originated from dry adiabatic warming induced by the dynamic downslope and synoptic subsidence. The conditions were aggravated by the increased air humidity during subsequent days, which resulted in historically high records of the heat index (i.e., an index representing the apparent temperature that incorporates both air temperature and moisture). The increased thermal energy and decreased boundary layer height resulted in a highly energized urban boundary layer. The differences between urban and rural thermal conditions throughout almost the entire boundary layer were enhanced during the heat wave, and the canopy-layer urban heat island intensity (UHII) reached up to 8°C at a central urban station at 2300 local standard time 10 July. A double-peak pattern in the diurnal cycle of UHIIs occurred during the heat wave and differed from the single-peak pattern of the decadal average UHII cycles. Different spatial distributions of UHII values occurred during the day and night.


2013 ◽  
Vol 34 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Eva Holtanova ◽  
Jaroslava Kalvova ◽  
Petr Pisoft ◽  
Jiri Miksovsky

Sign in / Sign up

Export Citation Format

Share Document