Uncertainty analysis of statistical downscaling models using Hadley Centre Coupled Model

2013 ◽  
Vol 114 (3-4) ◽  
pp. 673-690 ◽  
Author(s):  
S. Samadi ◽  
Catherine A. M. E. Wilson ◽  
Hamid Moradkhani
2014 ◽  
Vol 27 (8) ◽  
pp. 2931-2947 ◽  
Author(s):  
Ed Hawkins ◽  
Buwen Dong ◽  
Jon Robson ◽  
Rowan Sutton ◽  
Doug Smith

Abstract Decadal climate predictions exhibit large biases, which are often subtracted and forgotten. However, understanding the causes of bias is essential to guide efforts to improve prediction systems, and may offer additional benefits. Here the origins of biases in decadal predictions are investigated, including whether analysis of these biases might provide useful information. The focus is especially on the lead-time-dependent bias tendency. A “toy” model of a prediction system is initially developed and used to show that there are several distinct contributions to bias tendency. Contributions from sampling of internal variability and a start-time-dependent forcing bias can be estimated and removed to obtain a much improved estimate of the true bias tendency, which can provide information about errors in the underlying model and/or errors in the specification of forcings. It is argued that the true bias tendency, not the total bias tendency, should be used to adjust decadal forecasts. The methods developed are applied to decadal hindcasts of global mean temperature made using the Hadley Centre Coupled Model, version 3 (HadCM3), climate model, and it is found that this model exhibits a small positive bias tendency in the ensemble mean. When considering different model versions, it is shown that the true bias tendency is very highly correlated with both the transient climate response (TCR) and non–greenhouse gas forcing trends, and can therefore be used to obtain observationally constrained estimates of these relevant physical quantities.


2015 ◽  
Vol 8 (7) ◽  
pp. 1943-1954 ◽  
Author(s):  
D. R. Feldman ◽  
W. D. Collins ◽  
J. L. Paige

Abstract. Top-of-atmosphere (TOA) spectrally resolved shortwave reflectances and long-wave radiances describe the response of the Earth's surface and atmosphere to feedback processes and human-induced forcings. In order to evaluate proposed long-duration spectral measurements, we have projected 21st Century changes from the Community Climate System Model (CCSM3.0) conducted for the Intergovernmental Panel on Climate Change (IPCC) A2 Emissions Scenario onto shortwave reflectance spectra from 300 to 2500 nm and long-wave radiance spectra from 2000 to 200 cm−1 at 8 nm and 1 cm−1 resolution, respectively. The radiative transfer calculations have been rigorously validated against published standards and produce complementary signals describing the climate system forcings and feedbacks. Additional demonstration experiments were performed with the Model for Interdisciplinary Research on Climate (MIROC5) and Hadley Centre Global Environment Model version 2 Earth System (HadGEM2-ES) models for the Representative Concentration Pathway 8.5 (RCP8.5) scenario. The calculations contain readily distinguishable signatures of low clouds, snow/ice, aerosols, temperature gradients, and water vapour distributions. The goal of this effort is to understand both how climate change alters reflected solar and emitted infrared spectra of the Earth and determine whether spectral measurements enhance our detection and attribution of climate change. This effort also presents a path forward to understand the characteristics of hyperspectral observational records needed to confront models and inline instrument simulation. Such simulation will enable a diverse set of comparisons between model results from coupled model intercomparisons and existing and proposed satellite instrument measurement systems.


2006 ◽  
Vol 319 (1-4) ◽  
pp. 357-382 ◽  
Author(s):  
Mohammad Sajjad Khan ◽  
Paulin Coulibaly ◽  
Yonas Dibike

2011 ◽  
Vol 4 (4) ◽  
pp. 1051-1075 ◽  
Author(s):  
W. J. Collins ◽  
N. Bellouin ◽  
M. Doutriaux-Boucher ◽  
N. Gedney ◽  
P. Halloran ◽  
...  

Abstract. We describe here the development and evaluation of an Earth system model suitable for centennial-scale climate prediction. The principal new components added to the physical climate model are the terrestrial and ocean ecosystems and gas-phase tropospheric chemistry, along with their coupled interactions. The individual Earth system components are described briefly and the relevant interactions between the components are explained. Because the multiple interactions could lead to unstable feedbacks, we go through a careful process of model spin up to ensure that all components are stable and the interactions balanced. This spun-up configuration is evaluated against observed data for the Earth system components and is generally found to perform very satisfactorily. The reason for the evaluation phase is that the model is to be used for the core climate simulations carried out by the Met Office Hadley Centre for the Coupled Model Intercomparison Project (CMIP5), so it is essential that addition of the extra complexity does not detract substantially from its climate performance. Localised changes in some specific meteorological variables can be identified, but the impacts on the overall simulation of present day climate are slight. This model is proving valuable both for climate predictions, and for investigating the strengths of biogeochemical feedbacks.


2021 ◽  
Author(s):  
Sarah Ineson ◽  
Nick Dunstone ◽  
Adam Scaife ◽  
Kuniko Yamazaki

<p>Analysis of a long control run of the Hadley Centre coupled model shows that ENSO asymmetry is weak. We use the same model in our seasonal and decadal prediction systems, and while on seasonal timescales the initialised prediction realistically captures the amplitude of extreme El Niño events, on longer timescales the predictions revert to the control behaviour i.e. there are no very large El Niño events. This may impact on our ability evaluate the risk of extreme regional events. Here we show results exploring asymmetry in both the control model, and also from a number of perturbed parameter experiments, each a plausible realisation of the control.</p>


Sign in / Sign up

Export Citation Format

Share Document