scholarly journals The change of hydrological variables and its effects on vegetation in Central Asia

Author(s):  
Qing Peng ◽  
Ranghui Wang ◽  
Yelin Jiang ◽  
Cheng Li ◽  
Wenhui Guo

AbstractWater is an important factor that affects local ecological environments, especially in drylands. The hydrological cycle and vegetation dynamics in Central Asia (CA) have been severely affected by climate change. In this study, we employed data from Gravity Recovery and Climate Experiment (GRACE), Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model, and Climate Research Unit to analyze the spatiotemporal changes in hydrological factors (terrestrial water storage (TWS), evapotranspiration, precipitation, and groundwater) in CA from 2003 to 2015. Additionally, the spatiotemporal changes in vegetation dynamics and the influence of hydrological variables on vegetation were analyzed. The results showed that the declining rates of precipitation, evapotranspiration, GRACE-TWS change, GLDAS-TWS change and GW change were 0.40 mm/year, 0.11 mm/year, 50.46 mm/year (p < 0.05), 8.38 mm/year, and 41.18 mm/year (p < 0.05), respectively. Human activity (e.g., groundwater pumping) was the dominant in determining the GW decline in CA. Precipitation dominated the changes in evapotranspiration, GRACE-TWS and GLDAS-TWS (p < 0.05). The 2- to 3-month lagging signal has to do with the transportation from the ground surface to groundwater. The change in the normalized difference vegetation index (NDVI) from 2003 to 2015 indicated the slight vegetation degradation in CA. The results highlighted that precipitation, terrestrial water storage, and soil moisture make important contributions to the vegetation dynamics changes in CA. The effect of precipitation on vegetation growth in spring was significant (p < 0.05), while the soil moisture effect on vegetation in summer and autumn was higher than that of precipitation.

Land ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 15 ◽  
Author(s):  
Sabastine Ugbaje ◽  
Thomas Bishop

Vegetation activity in many parts of Africa is constrained by dynamics in the hydrologic cycle. Using satellite products, the relative importance of soil moisture, rainfall, and terrestrial water storage (TWS) on vegetation greenness seasonality and anomaly over Africa were assessed for the period between 2003 and 2015. The possible delayed response of vegetation to water availability was considered by including 0–6 and 12 months of the hydrological variables lagged in time prior to the vegetation greenness observations. Except in the drylands, the relationship between vegetation greenness seasonality and the hydrological measures was generally strong across Africa. Contrarily, anomalies in vegetation greenness were generally less coupled to anomalies in water availability, except in some parts of eastern and southern Africa where a moderate relationship was evident. Soil moisture was the most important variable driving vegetation greenness in more than 50% of the areas studied, followed by rainfall when seasonality was considered, and by TWS when the monthly anomalies were used. Soil moisture and TWS were generally concurrent or lagged vegetation by 1 month, whereas precipitation lagged vegetation by 1–2 months. Overall, the results underscore the pre-eminence of soil moisture as an indicator of vegetation greenness among satellite measured hydrological variables.


2021 ◽  
Author(s):  
Yadu Pokhrel ◽  

&lt;p&gt;Terrestrial water storage (TWS) strongly modulates the hydrological cycle, and is a key determinant of water resource availability, and an indicator of drought. While historical TWS variations have been extensively studied, the impacts of future climate change on TWS and the linkages to droughts remain unexamined. In this study, we quantify the impacts of climate change on TWS using an ensemble of hydrological simulations and examine the implications on droughts using the TWS drought severity index. Results indicate that climate change is projected to reduce TWS in two-third of global land area; TWS declines are especially severe in the southern hemisphere, leading to clear north-south contrast. Strong agreement across 27 ensemble simulations suggests high confidence in these projections. The declines in TWS translate to substantial increase in the occurrence and frequency of drought by mid- and late-21&lt;sup&gt;st&lt;/sup&gt; century. By the late-21&lt;sup&gt;st&lt;/sup&gt; century global land area and population in extreme-to-exceptional TWS drought could more than double, each increasing from 3% during 1976-2005 to 7% and 8%, respectively. Our findings underscore the need for stringent climate adaptation measures to avoid adverse effects on water resources due to declining TWS and increased droughts.&lt;/p&gt;


2017 ◽  
Vol 21 (9) ◽  
pp. 4533-4549 ◽  
Author(s):  
Mohammad Shamsudduha ◽  
Richard G. Taylor ◽  
Darren Jones ◽  
Laurent Longuevergne ◽  
Michael Owor ◽  
...  

Abstract. GRACE (Gravity Recovery and Climate Experiment) satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS), providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of TWS into individual terrestrial water stores (e.g. groundwater storage). Here, we test the phase and amplitude of three GRACE ΔTWS signals from five commonly used gridded products (i.e. NASA's GRCTellus: CSR, JPL, GFZ; JPL-Mascons; GRGS GRACE) using in situ data and modelled soil moisture from the Global Land Data Assimilation System (GLDAS) in two sub-basins (LVB: Lake Victoria Basin; LKB: Lake Kyoga Basin) of the Upper Nile Basin. The analysis extends from January 2003 to December 2012, but focuses on a large and accurately observed reduction in ΔTWS of 83 km3 from 2003 to 2006 in the Lake Victoria Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 80 km3 (JPL-Mascons) to 69 and 31 km3 for GRGS and GRCTellus respectively. Representation of the phase in TWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons, and GRCTellus (ensemble mean of CSR, JPL, and GFZ time-series data), explaining 90, 84, and 75 % of the variance respectively in "in situ" or "bottom-up" ΔTWS in the LVB. Resolution of changes in groundwater storage (ΔGWS) from GRACE ΔTWS is greatly constrained by both uncertainty in changes in soil-moisture storage (ΔSMS) modelled by GLDAS LSMs (CLM, NOAH, VIC) and the low annual amplitudes in ΔGWS (e.g. 1.8–4.9 cm) observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products; this uncertainty is disregarded in analyses of ΔTWS and individual stores applying a single GRACE product.


Author(s):  
Emad Hasan ◽  
Aondover Tarhule

GRACE-derived Terrestrial Water Storage Anomalies (TWSA) continue to be used in an expanding array of studies to analyze numerous processes and phenomena related to terrestrial water storage dynamics, including groundwater depletions, lake storage variations, snow, and glacial mass changes, as well as floods, droughts, among others. So far, however, few studies have investigated how the factors that affect total water storage (e.g., precipitation, runoff, soil moisture, evapotranspiration) interact and combine over space and time to produce the mass variations that GRACE detects. This paper is an attempt to fill that gap and stimulate needed research in this area. Using the Nile River Basin as case study, it explicitly analyzes nine hydroclimatic and anthropogenic processes, as well as their relationship to TWS in different climatic zones in the Nile River Basin. The analytic method employed the trends in both the dependent and independent variables applying two geographically multiple regression (GMR) approaches: (i) an unweighted or ordinary least square regression (OLS) model in which the contributions of all variables to TWS variability are deemed equal at all locations; and (ii) a geographically weighted regression (GWR) which assigns a weight to each variable at different locations based on the occurrence of trend clusters, determined by Moran&rsquo;s cluster index. In both cases, model efficacy was investigated using standard goodness of fit diagnostics. The OLS showed that trends in five variables (i.e., precipitation, runoff, surface water soil moisture, and population density) significantly (p&lt;0.0001) explain the trends in TWSA for the basin at large. However, the models R2 value is only 0.14. In contrast, the GWR produced R2 values ranging between 0.40 and 0.89, with an average of 0.86 and normally distributed standard residuals. The models retained in the GWR differ by climatic zone. The results showed that all nine variables contribute significantly to the trend in TWS in the Tropical region; population density is an important contributor to TWSA variability in all zones; ET and Population density are the only significant variables in the semiarid zone. This type of information is critical for developing robust statistical models for reconstructing time series of proxy GRACE anomalies that predate the launch of the GRACE mission and for gap-filling between GRACE and GRACE-FO.


2017 ◽  
Author(s):  
Mohammad Shamsudduha ◽  
Richard G. Taylor ◽  
Darren Jones ◽  
Laurent Longuevergne ◽  
Michael Owor ◽  
...  

Abstract. GRACE (Gravity Recovery and Climate Experiment) satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS) providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of ΔTWS into individual terrestrial water stores (e.g. groundwater storage). Here, we test the phase and amplitude of GRACE ΔTWS signals from 5 commonly-used gridded products (i.e., NASA's GRCTellus: CSR, JPL GFZ; JPL-Mascons; GRGS GRACE) using in situ data and modelled soil-moisture from the Global Land Data Assimilation System (GLDAS). The focus of this analysis is a large and accurately observed reduction in ΔTWS of 75 km3 from 2004 to 2006 in Lake Victoria in the Upper Nile Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 68 km3 (GRGS) to 50 km3 and 26 km3 for JPL-Mascons and GRCTellus, respectively. Representation of the phase in ΔTWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons and GRCTellus (ensemble mean of CSR, JPL and GFZ time-series data) explaining 91 %, 85 %, and 77 % of the variance, respectively, in in-situ ΔTWS. Resolution of changes in groundwater storage (ΔGWS) from GRACE ΔTWS is greatly constrained by both uncertainty in modelled changes in soil-moisture storage (ΔSMS) and the low annual amplitudes in ΔGWS (e.g., 3.5 to 4.4 cm) observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products.


2021 ◽  
Author(s):  
Tina Trautmann ◽  
Sujan Koirala ◽  
Nuno Carvalhais ◽  
Andreas Güntner ◽  
Martin Jung

Abstract. So far, various studies aimed at decomposing the integrated terrestrial water storage variations observed by satellite gravimetry (GRACE, GRACE-FO) with the help of large-scale hydrological models. While the results of the storage decomposition depend on model structure, little attention has been given to the impact of the way how vegetation is represented in these models. Although vegetation structure and activity represent the crucial link between water, carbon and energy cycles, their representation in large-scale hydrological models remains a major source of uncertainty. At the same time, the increasing availability and quality of Earth observation-based vegetation data provide valuable information with good prospects for improving model simulations and gaining better insights into the role of vegetation within the global water cycle. In this study, we use observation-based vegetation information such as vegetation indices and rooting depths for spatializing the parameters of a simple global hydrological model to define infiltration, root water uptake and transpiration processes. The parameters are further constrained by considering observations of terrestrial water storage anomalies (TWS), soil moisture, evapotranspiration (ET) and gridded runoff (Q) estimates in a multi-criteria calibration approach. We assess the implications of including vegetation on the simulation results, with a particular focus on the partitioning between water storage components. To isolate the effect of vegetation, we compare a model experiment with vegetation parameters varying in space and time to a baseline experiment in which all parameters are calibrated as static, globally uniform values. Both experiments show good overall performance, but including vegetation data led to even better performance and more physically plausible parameter values. Largest improvements regarding TWS and ET were seen in supply-limited (semi-arid) regions and in the tropics, whereas Q simulations improve mainly in northern latitudes. While the total fluxes and storages are similar, accounting for vegetation substantially changes the contributions of snow and different soil water storage components to the TWS variations, with the dominance of an intermediate water pool that interacts with the fast plant accessible soil moisture and the delayed water storage. The findings indicate the important role of deeper moisture storages as well as groundwater-soil moisture-vegetation interactions as a key to understanding TWS variations. We highlight the need for further observations to identify the adequate model structure rather than only model parameters for a reasonable representation and interpretation of vegetation-water interactions.


2015 ◽  
Vol 19 (4) ◽  
pp. 2079-2100 ◽  
Author(s):  
N. Tangdamrongsub ◽  
S. C. Steele-Dunne ◽  
B. C. Gunter ◽  
P. G. Ditmar ◽  
A. H. Weerts

Abstract. The ability to estimate terrestrial water storage (TWS) realistically is essential for understanding past hydrological events and predicting future changes in the hydrological cycle. Inadequacies in model physics, uncertainty in model land parameters, and uncertainties in meteorological data commonly limit the accuracy of hydrological models in simulating TWS. In an effort to improve model performance, this study investigated the benefits of assimilating TWS estimates derived from the Gravity Recovery and Climate Experiment (GRACE) data into the OpenStreams wflow_hbv model using an ensemble Kalman filter (EnKF) approach. The study area chosen was the Rhine River basin, which has both well-calibrated model parameters and high-quality forcing data that were used for experimentation and comparison. Four different case studies were examined which were designed to evaluate different levels of forcing data quality and resolution including those typical of other less well-monitored river basins. The results were validated using in situ groundwater (GW) and stream gauge data. The analysis showed a noticeable improvement in GW estimates when GRACE data were assimilated, with a best-case improvement of correlation coefficient from 0.31 to 0.53 and root mean square error (RMSE) from 8.4 to 5.4 cm compared to the reference (ensemble open-loop) case. For the data-sparse case, the best-case GW estimates increased the correlation coefficient from 0.46 to 0.61 and decreased the RMSE by 35%. For the average improvement of GW estimates (for all four cases), the correlation coefficient increases from 0.6 to 0.7 and the RMSE was reduced by 15%. Only a slight overall improvement was observed in streamflow estimates when GRACE data were assimilated. Further analysis suggested that this is likely due to sporadic short-term, but sizeable, errors in the forcing data and the lack of sufficient constraints on the soil moisture component. Overall, the results highlight the benefit of assimilating GRACE data into hydrological models, particularly in data-sparse regions, while also providing insight on future refinements of the methodology.


2019 ◽  
Vol 124 (14) ◽  
pp. 7786-7796 ◽  
Author(s):  
Ajiao Chen ◽  
Huade Guan ◽  
Okke Batelaan ◽  
Xinping Zhang ◽  
Xinguang He

Sign in / Sign up

Export Citation Format

Share Document