On the stability of thin-walled, corrugated, circular cylindrical shells under external pressure

2008 ◽  
Vol 195 (1-4) ◽  
pp. 117-128 ◽  
Author(s):  
Heinz W. Bargmann
1974 ◽  
Vol 96 (4) ◽  
pp. 1322-1327
Author(s):  
Shun Cheng ◽  
C. K. Chang

The buckling problem of circular cylindrical shells under axial compression, external pressure, and torsion is investigated using a displacement function φ. A governing differential equation for the stability of thin cylindrical shells under combined loading of axial compression, external pressure, and torsion is derived. A method for the solutions of this equation is also presented. The advantage in using the present equation over the customary three differential equations for displacements is that only one trial solution is needed in solving the buckling problems as shown in the paper. Four possible combinations of boundary conditions for a simply supported edge are treated. The case of a cylinder under axial compression is carried out in detail. For two types of simple supported boundary conditions, SS1 and SS2, the minimum critical axial buckling stress is found to be 43.5 percent of the well-known classical value Eh/R3(1−ν2) against the 50 percent of the classical value presently known.


Author(s):  
J.L. Urrutia-Galicia ◽  
A.N. Sherbourne

The mathematical model of the stability analysis of circular cylindrical shells under arbitrary internal pressure is presented. The paper consists of a direct analysis of the equilibrium modes in the neighbourhood of the unperturbed principal equilibrium path. The final stability condition results in a completely symmetric differential operator which is then compared with current theories found in the literature.


2018 ◽  
Vol 877 ◽  
pp. 453-459
Author(s):  
B. Angelina Catherine ◽  
R.S. Priyadarsini

Buckling is a prominent condition of instability caused to a shell structure as a result of axial loadings. The process of buckling becomes more complex while analyzing thin walled structures like shells. Today such thin walled laminated composite shells are gaining more importance in many defense and industrial applications since they have greater structural efficiency and performance in relation to isotropic structures. Comprehensive understanding of the buckling response of shell structures is necessary to assure the integrity of these shells during their service life. The presence of defects, such as cracks, may severely compromise their buckling behavior and jeopardize the structural integrity. This work aims in conducting numerical analysis of cracked GFRP (Glass fibre-reinforced polymer) composite cylindrical shells under combined loading to study the effect of crack size on the buckling behavior of laminated composite cylindrical shells with different lay-up sequences. The numerical analyses were carried out using the finite element software, ABAQUS in order to predict the buckling behaviour of cracked laminated composite cylinders subject to different combinations of axial compression, torsion, internal pressure and external pressure from the interaction buckling curves.


1961 ◽  
Vol 28 (1) ◽  
pp. 112-116 ◽  
Author(s):  
Paul Seide ◽  
V. I. Weingarten

The stability of circular cylindrical shells under pure bending is investigated by means of Batdorf’s modified Donnell’s equation and the Galerkin method. The results of this investigation have shown that, contrary to the commonly accepted value, the maximum critical bending stress is for all practical purposes equal to the critical compressive stress.


Sign in / Sign up

Export Citation Format

Share Document