scholarly journals Immunohistochemical analyses on two distinct internodes of stinging nettle show different distribution of polysaccharides and proteins in the cell walls of bast fibers

PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Claudia Faleri ◽  
Xuan Xu ◽  
Lavinia Mareri ◽  
Jean-Francois Hausman ◽  
Giampiero Cai ◽  
...  

AbstractStinging nettle is a perennial herbaceous species holding value as a multi-purpose plant. Indeed, its leaves and roots are phytofactories providing functional ingredients of medicinal interest and its stems produce silky and resistant extraxylary fibers (a.k.a. bast fibers) valued in the biocomposite sector. Similarly to what is reported in other fiber crops, the stem of nettle contains both lignified and hypolignified fibers in the core and cortex, respectively, and it is therefore a useful model for cell wall research. Indeed, data on nettle stem tissues can be compared to those obtained in other models, such as hemp and flax, to support hypotheses on the differentiation and development of bast fibers. The suitability of the nettle stem as model for cell wall-related research was already validated using a transcriptomics and biochemical approach focused on internodes at different developmental stages sampled at the top, middle, and bottom of the stem. We here sought to complement and enrich these data by providing immunohistochemical and ultrastructural details on young and older stem internodes. Antibodies recognizing non-cellulosic polysaccharides (galactans, arabinans, rhamnogalacturonans) and arabinogalactan proteins were here investigated with the goal of understanding whether their distribution changes in the stem tissues in relation to the bast fiber and vascular tissue development. The results obtained indicate that the occurrence and distribution of cell wall polysaccharides and proteins differ between young and older internodes and that these changes are particularly evident in the bast fibers.

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1263
Author(s):  
David Stuart Thompson ◽  
Azharul Islam

The extensibility of synthetic polymers is routinely modulated by the addition of lower molecular weight spacing molecules known as plasticizers, and there is some evidence that water may have similar effects on plant cell walls. Furthermore, it appears that changes in wall hydration could affect wall behavior to a degree that seems likely to have physiological consequences at water potentials that many plants would experience under field conditions. Osmotica large enough to be excluded from plant cell walls and bacterial cellulose composites with other cell wall polysaccharides were used to alter their water content and to demonstrate that the relationship between water potential and degree of hydration of these materials is affected by their composition. Additionally, it was found that expansins facilitate rehydration of bacterial cellulose and cellulose composites and cause swelling of plant cell wall fragments in suspension and that these responses are also affected by polysaccharide composition. Given these observations, it seems probable that plant environmental responses include measures to regulate cell wall water content or mitigate the consequences of changes in wall hydration and that it may be possible to exploit such mechanisms to improve crop resilience.


1990 ◽  
Vol 269 (2) ◽  
pp. 393-402 ◽  
Author(s):  
P Ryden ◽  
R R Selvendran

1. Polymers were solubilized from the cell walls of parenchyma from mature runner-bean pods with minimum degradation by successive extractions with cyclohexane-trans-1,2-diamine-NNN′N′-tetra-acetate (CDTA), Na2CO3 and KOH to leave the alpha-cellulose residue, which contained cross-linked pectic polysaccharides and Hyp-rich glycoproteins. These were solubilized with chlorite/acetic acid and cellulase. The polymers were fractionated by anion-exchange chromatography, and fractions were subjected to methylation analysis. 2. The pectic polysaccharides differed in their ease of extraction, and a small proportion were highly cross-linked. The bulk of the pectic polysaccharides solubilized by CDTA and Na2CO3 were less branched than those solubilized by KOH. There was good evidence that most of the pectic polysaccharides were not degraded during extraction. 3. The protein-containing fractions included Hyp-rich and Hyp-poor glycoproteins associated with easily extractable pectic polysaccharides, Hyp-rich glycoproteins solubilized with 4M-KOH+borate, the bulk of which were not associated with pectic polysaccharides, and highly cross-linked Hyp-rich glycoproteins. 4. Isodityrosine was not detected, suggesting that it does not have a (major) cross-linking role in these walls. Instead, it is suggested that phenolics, presumably linked to C-5 of 3,5-linked Araf residues of Hyp-rich glycoproteins, serve to cross-link some of the polymers. 5. There were two main types of xyloglucan, with different degrees of branching. The bulk of the less branched xyloglucans were solubilized by more-concentrated alkali. The anomeric configurations of the sugars in one of the highly branched xyloglucans were determined by 13C-n.m.r. spectroscopy. 6. The structural features of the cell-wall polymers and complexes are discussed in relation to the structure of the cell walls of parenchyma tissues.


IAWA Journal ◽  
2012 ◽  
Vol 33 (4) ◽  
pp. 403-416 ◽  
Author(s):  
Karumanchi S. Rao ◽  
Yoon Soo Kim ◽  
Pramod Sivan

Sequential changes occurring in cell walls during expansion, secondary wall (SW) deposition and lignification have been studied in the differentiating xylem elements of Holoptelea integrifolia using transmission electron microscopy. The PATAg staining revealed that loosening of the cell wall starts at the cell corner middle lamella (CCML) and spreads to radial and tangential walls in the zone of cell expansion (EZ). Lignification started at the CCML region between vessels and associated parenchyma during the final stages of S2 layer formation. The S2 layer in the vessel appeared as two sublayers,an inner one and outer one.The contact ray cells showed SW deposition soon after axial paratracheal parenchyma had completed it, whereas noncontact ray cells underwent SW deposition and lignification following apotracheal parenchyma cells. The paratracheal and apotracheal parenchyma cells differed noticeably in terms of proportion of SW layers and lignin distribution pattern. Fibres were found to be the last xylem elements to complete SW deposition and lignification with differential polymerization of cell wall polysaccharides. It appears that the SW deposition started much earlier in the middle region of the fibres while their tips were still undergoing elongation. In homogeneous lignin distribution was noticed in the CCML region of fibres.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 786B-786
Author(s):  
Guiwen W. Cheng ◽  
Donald J. Huber

Softening and liquefaction of `Solar Set' locules was studied by examining cell wall polysaccharides during fruit developmental stages (FDS) of immature green, mature green and breaker. Ethanol insoluble solids (EIS) were sequentially extracted by H2O, CDTA, and Na2CO3 solutions. The chromatograms of gel filtration among the same-solution extracts of EISs from three FDS were similar. Gradient DEAE also yielded similar patterns among FDS in each extraction solvent, even though the patterns of Na2CO3 extracts differed from those of H2O and CDTA extracts. The mole ratio of total polyuronides decreased for Gal, Ara, and Xyl at later FDS in both EIS and in all extracted polymers. Gal had the highest mole percentage of total neutral sugars, followed by Ara, Xyl, and Rha. While the mole percentage of neutral sugars for Gal, Rha, Ara, and Xyl were relatively similar among FDS in H2O extracts, those in CDTA and Na2CO3 extracts either increased or decreased, depending on individual neutral sugar. SDS-PAGE showed increased density in locule-tissue proteins, especially one with a molecular weight of less than 20 kDa, during later FDS. Results indicate that pectin depolymerization was limited and major neutral sugars commonly composing side chains showed a net decrease.


2000 ◽  
Vol 51 (3) ◽  
pp. 393 ◽  
Author(s):  
A. Barrios Urdaneta ◽  
M. Fondevila ◽  
J. Balcells ◽  
C. Dapoza ◽  
C. Castrillo

The effect of carbohydrate supplementation on microbial fibre digestion was studied in vitro, by measuring the disappearance of cell wall monosaccharides, bacterial adhesion (mmol purine bases per g residue), and total (per g residue) and bacterial (per mmol purine bases) polysaccharidase activity. Straw cell walls (CW, 0.5% w/v) were cultured in medium supplemented with (0.275% w/v) or without starch, a sugar mixture, or pectin. Supplementation with these constituents did not cause a drop in pH below 6.1, and increased all parameters investigated with the exception of bacterial polysaccharidase activity, which was higher for CW cultures, suggesting a higher proportion of fibrolytic bacteria in the adherent population. By comparison with starch and sugar, pectin supplementation resulted in a lower proportion of residual sugars remaining from cell walls after 60 and 72 h (P < 0.05), which resulted in greater bacterial adhesion after 8 and 12 h (P < 0.05) and higher total cellulase activity after 8 h (P < 0.01). This was perhaps because pectin may cover particle surfaces, protecting the digestive area from external factors, or may act as a substrate for cellulolytic bacteria. The lack of differences in bacterial enzymatic activities suggests the absence of qualitative or quantitative differences in the adherent fibrolytic population.


2020 ◽  
Vol 21 (15) ◽  
pp. 5322
Author(s):  
Nadezda Ibragimova ◽  
Natalia Mokshina ◽  
Marina Ageeva ◽  
Oleg Gurjanov ◽  
Polina Mikshina

The plant cell wall is a complex structure consisting of a polysaccharide network. The rearrangements of the cell wall during the various physiological reactions of plants, however, are still not fully characterized. Profound changes in cell wall organization are detected by microscopy in the phloem fibers of flax (Linum usitatissimum) during the restoration of the vertical position of the inclined stems. To characterize the underlying biochemical and structural changes in the major cell wall polysaccharides, we compared the fiber cell walls of non-inclined and gravistimulated plants by focusing mainly on differences in non-cellulosic polysaccharides and the fine cellulose structure. Biochemical analysis revealed a slight increase in the content of pectins in the fiber cell walls of gravistimulated plants as well as an increase in accessibility for labeling non-cellulosic polysaccharides. The presence of galactosylated xyloglucan in the gelatinous cell wall layer of flax fibers was demonstrated, and its labeling was more pronounced in the gravistimulated plants. Using solid state NMR, an increase in the crystallinity of the cellulose in gravistimulated plants, along with a decrease in cellulose mobility, was demonstrated. Thus, gravistimulation may affect the rearrangement of the cell wall, which can enable restoration in a vertical position of the plant stem.


BioResources ◽  
2007 ◽  
Vol 2 (2) ◽  
pp. 284-295
Author(s):  
Clemens Altaner ◽  
J. Paul Knox ◽  
Michael C. Jarvis

Wood cell wall polysaccharides can be probed with monoclonal antibodies and carbohydrate-binding modules (CBMs). Binding of monoclonal antibodies to β-1-4-xylan, β-1-4-mannan, β-1-3-glucan, and α-1-5-arabinan structures were observed in native Sitka spruce (Picea sitchensis (Bong.) Carrière) wood cell walls. Furthermore CBMs of different families, differing in their affinities for crystalline cellulose (3a) and amorphous cellulose (17 and 28), were shown to bind to the native wood cell walls with varying intensities. Resin channel forming cells exhibited an increased β-1-4-xylan and a decreased β-1-4-mannan content. Focusing on severe compression wood (CW) tracheids, β-1-3-glucan was found towards the cell lumen. In contrast, α-1-5-arabinan structures were present in the intercellular spaces between the round tracheids in severe CW, highlighting the importance of this polymer in cell adhesion.


2018 ◽  
Author(s):  
S Dinant ◽  
N Wolff ◽  
F De Marco ◽  
F Vilaine ◽  
L Gissot ◽  
...  

AbstractCell walls are highly complex structures that are modified during plant growth and development. For example, the development of phloem and xylem vascular cells, which participate in the transport of sugars and water as well as support, can be influenced by cell-specific cell wall composition. Here, we used synchrotron radiation-based infrared (SR-FTIR) and Raman spectroscopy to analyze the cell wall composition of wild-type and double mutant sweet11-1sweet12-1, which impairs sugar transport, Arabidopsis floral stem vascular tissue. The SR-FTIR spectra showed that in addition to modified xylem cell wall composition, phloem cell walls in the double mutant line were characterized by modified hemicellulose composition. Moreover, combining Raman spectroscopy with a Classification and Regression Tree (CART) method identified combinations of Raman shifts that could distinguish xylem vessels and fibers. Additionally, the disruption of SWEET11 and SWEET12 genes impacts xylem cell wall composition in a cell-specific manner, with changes in hemicelluloses and cellulose observed at the xylem vessel interface. These results suggest that the facilitated transport of sugars by transporters that exist between vascular parenchyma cells and conducting cells is important to ensuring correct phloem and xylem cell wall composition.HighlightCombining vibrational spectroscopy techniques and multivariate analysis shows that the disruption of SWEET genes impacts phloem cell wall composition and that the effect on xylem cell wall composition is cell-specific.


BIO-PROTOCOL ◽  
2016 ◽  
Vol 6 (5) ◽  
Author(s):  
Ryusuke Yokoyama ◽  
Natsumi Kido ◽  
Tsuyoshi Yamamoto ◽  
Jun Furukawa ◽  
Hiroaki Iwai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document