Predicting subcellular location of apoptosis proteins based on wavelet transform and support vector machine

Amino Acids ◽  
2009 ◽  
Vol 38 (4) ◽  
pp. 1201-1208 ◽  
Author(s):  
Jian-Ding Qiu ◽  
San-Hua Luo ◽  
Jian-Hua Huang ◽  
Xing-Yu Sun ◽  
Ru-Ping Liang
2019 ◽  
Vol 20 (9) ◽  
pp. 2344
Author(s):  
Yang Yang ◽  
Huiwen Zheng ◽  
Chunhua Wang ◽  
Wanyue Xiao ◽  
Taigang Liu

To reveal the working pattern of programmed cell death, knowledge of the subcellular location of apoptosis proteins is essential. Besides the costly and time-consuming method of experimental determination, research into computational locating schemes, focusing mainly on the innovation of representation techniques on protein sequences and the selection of classification algorithms, has become popular in recent decades. In this study, a novel tri-gram encoding model is proposed, which is based on using the protein overlapping property matrix (POPM) for predicting apoptosis protein subcellular location. Next, a 1000-dimensional feature vector is built to represent a protein. Finally, with the help of support vector machine-recursive feature elimination (SVM-RFE), we select the optimal features and put them into a support vector machine (SVM) classifier for predictions. The results of jackknife tests on two benchmark datasets demonstrate that our proposed method can achieve satisfactory prediction performance level with less computing capacity required and could work as a promising tool to predict the subcellular locations of apoptosis proteins.


2013 ◽  
Vol 647 ◽  
pp. 600-606 ◽  
Author(s):  
Tao Li ◽  
Qian Zhong Li

Apoptosis proteins are very important for regulating the balance between cell proliferation and death. Because the function of apoptosis protein is closely related to its subcellular location, it is desirable to explore their function by predicting the subcellular location of apoptosis protein. In this paper, based on evolutionary profiles and motifs information of protein sequences, an approach for predicting apoptosis proteins subcellular location is presented by using support vector machine (SVM). When the method is applied to three data sets (98 apoptosis proteins dataset, 225 apoptosis proteins dataset and 317 apoptosis proteins dataset), the overall accuracies of our method on the three data sets reach 95.9%, 86.7% and 91.8% in the jackknife test, respectively. The higher predictive success rates indicate that the proposed method is very useful for apoptosis proteins subcellular localization.


RSC Advances ◽  
2016 ◽  
Vol 6 (55) ◽  
pp. 50027-50033 ◽  
Author(s):  
S. Bakhtiaridoost ◽  
H. Habibiyan ◽  
S. Muhammadnejad ◽  
M. Haddadi ◽  
H. Ghafoorifard ◽  
...  

Wavelet transform and SVM applied to Raman spectra makes a powerful and accurate tool for identification of rare cells such as CTCs.


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Suhail Khokhar ◽  
A. A. Mohd Zin ◽  
M. A. Bhayo ◽  
A. S. Mokhtar

The monitoring of power quality (PQ) disturbances in a systematic and automated way is an important issue to prevent detrimental effects on power system. The development of new methods for the automatic recognition of single and hybrid PQ disturbances is at present a major concern. This paper presents a combined approach of wavelet transform based support vector machine (WT-SVM) for the automatic classification of single and hybrid PQ disturbances. The proposed approach is applied by using synthetic models of various single and hybrid PQ signals. The suitable features of the PQ waveforms were first extracted by using discrete wavelet transform. Then SVM classifies the type of PQ disturbances based on these features. The classification performance of the proposed algorithm is also compared with wavelet based radial basis function neural network, probabilistic neural network and feed-forward neural network. The experimental results show that the recognition rate of the proposed WT-SVM based classification system is more accurate and much better than the other classifiers. 


Sign in / Sign up

Export Citation Format

Share Document