Free amino acid production during tomato fruit ripening: a focus on l-glutamate

Amino Acids ◽  
2009 ◽  
Vol 38 (5) ◽  
pp. 1523-1532 ◽  
Author(s):  
Augusto Sorrequieta ◽  
Gisela Ferraro ◽  
Silvana B. Boggio ◽  
Estela M. Valle
2018 ◽  
Vol 24 (2) ◽  
pp. 299-309 ◽  
Author(s):  
Risa Saiki ◽  
Tatsuro Hagi ◽  
Takumi Narita ◽  
Miho Kobayashi ◽  
Keisuke Sasaki ◽  
...  

1968 ◽  
Vol 17 (6) ◽  
pp. 800-803 ◽  
Author(s):  
Richard J. Cenedella ◽  
Charles R. Angel ◽  
Leroy H. Saxe ◽  
Hyman Rosen

2019 ◽  
Vol 25 (3) ◽  
pp. 485-488
Author(s):  
Risa Saiki ◽  
Tatsuro Hagi ◽  
Takumi Narita ◽  
Miho Kobayashi ◽  
Keisuke Sasaki ◽  
...  

2018 ◽  
Vol 6 (27) ◽  
Author(s):  
Yui Asahina ◽  
Akino Shiroma ◽  
Kazuma Nakano ◽  
Hinako Tamotsu ◽  
Noriko Ashimine ◽  
...  

Lactobacillus paracasei EG9 is a strain isolated from well-ripened cheese and accelerates free amino acid production during cheese ripening. Its complete genome sequence was determined using the PacBio RS II platform, revealing a single circular chromosome of 2,927,257 bp, a G+C content of 46.59%, and three plasmids.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kang-Di Hu ◽  
Xiao-Yue Zhang ◽  
Gai-Fang Yao ◽  
Yu-Lei Rong ◽  
Chen Ding ◽  
...  

AbstractHydrogen sulfide (H2S) is a gaseous signaling molecule that plays multiple roles in plant development. However, whether endogenous H2S plays a role in fruit ripening in tomato is still unknown. In this study, we show that the H2S-producing enzyme l-cysteine desulfhydrase SlLCD1 localizes to the nucleus. By constructing mutated forms of SlLCD1, we show that the amino acid residue K24 of SlLCD1 is the key amino acid that determines nuclear localization. Silencing of SlLCD1 by TRV-SlLCD1 accelerated fruit ripening and reduced H2S production compared with the control. A SlLCD1 gene-edited mutant obtained through CRISPR/Cas9 modification displayed a slightly dwarfed phenotype and accelerated fruit ripening. This mutant also showed increased cysteine content and produced less H2S, suggesting a role of SlLCD1 in H2S generation. Chlorophyll degradation and carotenoid accumulation were enhanced in the SlLCD1 mutant. Other ripening-related genes that play roles in chlorophyll degradation, carotenoid biosynthesis, cell wall degradation, ethylene biosynthesis, and the ethylene signaling pathway were enhanced at the transcriptional level in the lcd1 mutant. Total RNA was sequenced from unripe tomato fruit treated with exogenous H2S, and transcriptome analysis showed that ripening-related gene expression was suppressed. Based on the results for a SlLCD1 gene-edited mutant and exogenous H2S application, we propose that the nuclear-localized cysteine desulfhydrase SlLCD1 is required for endogenous H2S generation and participates in the regulation of tomato fruit ripening.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
EJ Cho ◽  
XL Piao ◽  
MH Jang ◽  
SY Park ◽  
SW Kwon ◽  
...  

Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
BM Silva ◽  
AP Oliveira ◽  
DM Pereira ◽  
C Sousa ◽  
RM Seabra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document