chlorophyll degradation
Recently Published Documents


TOTAL DOCUMENTS

339
(FIVE YEARS 68)

H-INDEX

43
(FIVE YEARS 7)

2021 ◽  
Vol 12 ◽  
Author(s):  
Ke Teng ◽  
Yuesen Yue ◽  
Hui Zhang ◽  
Hui Li ◽  
Lixin Xu ◽  
...  

Pheophytinase (PPH), the phytol hydrolase, plays important roles in chlorophyll degradation. Nevertheless, little attention has been paid to the PPHs in warm-season grass species; neither its detailed function in photosynthesis has been systematically explored to date. In this study, we isolated ZjPPH from Zoysia japonica, an excellent warm-season turfgrass species. Quantitative real-time PCR analysis and promoter activity characterization revealed that the expression of ZjPPH could be induced by senescence, ABA, and dark induction. Subcellular localization observation proved that ZjPPH was localized in the chloroplasts. Overexpression of ZjPPH accelerated the chlorophyll degradation and rescued the stay-green phenotype of the Arabidopsis pph mutant. Moreover, ZjPPH promoted senescence with the accumulation of ABA and soluble sugar contents, as well as the increased transcriptional level of SAG12 and SAG14. Transmission electron microscopy investigation revealed that ZjPPH caused the decomposition of chloroplasts ultrastructure in stable transformed Arabidopsis. Furthermore, chlorophyll a fluorescence transient measurement analysis suggested that ZjPPH suppressed photosynthesis efficiency by mainly suppressing both photosystem II (PSII) and photosystem I (PSI). In conclusion, ZjPPH plays an important role in chlorophyll degradation and senescence. It could be a valuable target for genetic editing to cultivate new germplasms with stay-green performance and improved photosynthetic efficiency.


2021 ◽  
Author(s):  
Isabel Schumacher ◽  
Damian Menghini ◽  
Serguei Ovinnikov ◽  
Mareike Hauenstein ◽  
Nick Fankhauser ◽  
...  

2021 ◽  
Author(s):  
Luhua Li ◽  
Chang An ◽  
Zhongni Wang ◽  
Fumin Xiong ◽  
Yingxi Wang ◽  
...  

Abstract Anthocyanidin synthase (ANS) is involved in the synthesis of anthocyanins, which are important phytonutrients because of their beneficial effects on human health. Here, we identified ANS-6D of purple-colored Triticum aestivum L. cv. Guizi 1 (Gz) that is involved in leaf senescence through the abscisic acid (ABA) mediated chlorophyll degradation pathway in tobacco. After characterizing the leaf-senescence phenotype in GzANS-6D overexpression (OxGzANS-6D) lines, we found that the increased anthocyanin accumulation and decreased chlorophyll content in OxGzANS-6D lines were closely correlated with the expression levels of anthocyanin synthesis-related structural genes and senescence marker genes, as well as the accumulation of reactive oxygen species. The endogenous ABA content increased and ethylene content decreased in OxGzANS-6D transgenic lines compared with wild type. Additionally, the levels of the abscisic acid-responsive transcription factors ABF1 and ABF2, as well as those of chlorophyll degradation-related genes (PAO, NYC, SGR and CHL), were significantly higher in OxGzANS-6D transgenic lines than in wild type. Furthermore, we found that GzABF1 and NtABF1 binds to the promoter of GzANS-6D, and NtABF2 binds to the promoter of NtSGR. Thus, GzANS-6D participated in leaf senescence through ABA-mediated chlorophyll degradation, and ABF1/2 play important role in GzANS-6D functions.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3017
Author(s):  
Yanfei Liu ◽  
Guowen Lv ◽  
Jiaxin Chai ◽  
Yaqi Yang ◽  
Fengwang Ma ◽  
...  

The development of yellow color is an important aspect of fruit quality in yellow fleshed kiwifruit during fruit ripening, and it has a large influence on consumer preference. The yellow color is determined by carotenoid accumulation and chlorophyll degradation and is likely affected by ethylene production. This study investigates the expression of carotenoid, chlorophyll degradation, and ethylene response factors in ‘Qihong’ fruit, which had reached the near ripening stage (firmness ≈ 20 N) and were either left untreated (controls) or treated with 0.5 μL L−1 of 1-MCP for 12 h. Both the accumulation of β-carotene (not lutein) and degradation of chlorophyll a and b increased in response to the 1-MCP treatment, resulting in more yellow colored flesh in the 1-MCP treated fruit with higher carotenoid and lower chlorophyll contents. 1-MCP up-regulated AcLCY-β, AcSGR1, and AcPAO2, but reduced the expression of AcCCD1. These four genes were correlated with the concentrations of β-carotene and the chlorophylls. The expression of three ethylene response factors, including Acc29730, Acc25620, and Acc23763 were delayed and down-regulated in 1-MCP treated fruit, showing the highest correlation with the expression of AcLCY-β, AcSGR1, AcPAO2, and AcCCD1. Dual-Luciferase assays showed that 1-MCP treatment not only eliminated the inhibition of Acc23763 on the promoters of both AcPAO2 and AcLCY-β, but also reduced the activation of Acc29730 and Acc25620 on the AcCCD1 promoter. Our findings indicate that Acc29730, Acc25620, and Acc23763 may play an important role in the response to 1-MCP treatment during the fruit eating ripe stage, which likely altered the promoter activities of carotenoid and chlorophyll-related genes (AcPAO2, AcLCY-β and AcCCD1) to regulate their transcripts, resulting in more yellow color in the fruit flesh of ‘Qihong’.


2021 ◽  
Vol 22 (23) ◽  
pp. 13078
Author(s):  
Kangdi Hu ◽  
Xiangjun Peng ◽  
Gaifang Yao ◽  
Zhilin Zhou ◽  
Feng Yang ◽  
...  

Hydrogen sulfide (H2S), a novel gasotransmitter in both mammals and plants, plays important roles in plant development and stress responses. Leaf senescence represents the final stage of leaf development. The role of H2S-producing enzyme L-cysteine desulfhydrase in regulating tomato leaf senescence is still unknown. In the present study, the effect of an L-cysteine desulfhydrase LCD1 on leaf senescence in tomato was explored by physiological analysis. LCD1 mutation caused earlier leaf senescence, whereas LCD1 overexpression significantly delayed leaf senescence compared with the wild type in 10-week tomato seedlings. Moreover, LCD1 overexpression was found to delay dark-induced senescence in detached tomato leaves, and the lcd1 mutant showed accelerated senescence. An increasing trend of H2S production was observed in leaves during storage in darkness, while LCD1 deletion reduced H2S production and LCD1 overexpression produced more H2S compared with the wild-type control. Further investigations showed that LCD1 overexpression delayed dark-triggered chlorophyll degradation and reactive oxygen species (ROS) accumulation in detached tomato leaves, and the increase in the expression of chlorophyll degradation genes NYC1, PAO, PPH, SGR1, and senescence-associated genes (SAGs) during senescence was attenuated by LCD1 overexpression, whereas lcd1 mutants showed enhanced senescence-related parameters. Moreover, a correlation analysis indicated that chlorophyll content was negatively correlated with H2O2 and malondialdehyde (MDA) content, and also negatively correlated with the expression of chlorophyll degradation-related genes and SAGs. Therefore, these findings increase our understanding of the physiological functions of the H2S-generating enzyme LCD1 in regulating leaf senescence in tomato.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yuan Shi ◽  
Xiaoqin Pang ◽  
Wenjing Liu ◽  
Rui Wang ◽  
Deding Su ◽  
...  

AbstractChlorophylls and carotenoids are essential and beneficial substances for both plant and human health. Identifying the regulatory network of these pigments is necessary for improving fruit quality. In a previous study, we identified an R2R3-MYB transcription factor, SlMYB72, that plays an important role in chlorophyll and carotenoid metabolism in tomato fruit. Here, we demonstrated that the SlMYB72-interacting protein SlZHD17, which belongs to the zinc-finger homeodomain transcription factor family, also functions in chlorophyll and carotenoid metabolism. Silencing SlZHD17 in tomato improved multiple beneficial agronomic traits, including dwarfism, accelerated flowering, and earlier fruit harvest. More importantly, downregulating SlZHD17 in fruits resulted in larger chloroplasts and a higher chlorophyll content. Dual-luciferase, yeast one-hybrid and electrophoretic mobility shift assays clarified that SlZHD17 regulates the chlorophyll biosynthesis gene SlPOR-B and chloroplast developmental regulator SlTKN2 in a direct manner. Chlorophyll degradation and plastid transformation were also retarded after suppression of SlZHD17 in fruits, which was caused by the inhibition of SlSGR1, a crucial factor in chlorophyll degradation. On the other hand, the expression of the carotenoid biosynthesis genes SlPSY1 and SlZISO was also suppressed and directly regulated by SlZHD17, which induced uneven pigmentation and decreased the lycopene content in fruits with SlZHD17 suppression at the ripe stage. Furthermore, the protein–protein interactions between SlZHD17 and other pigment regulators, including SlARF4, SlBEL11, and SlTAGL1, were also presented. This study provides new insight into the complex pigment regulatory network and provides new options for breeding strategies aiming to improve fruit quality.


2021 ◽  
Author(s):  
Isabel Schumacher ◽  
Damian Menghini ◽  
Serguei Ovinnikov ◽  
Mareike Hauenstein ◽  
Nick Fankhauser ◽  
...  

AbstractColonization of land by green plants (Viridiplantae) some 500 million years ago was made possible by large metabolic and biochemical adaptations. Chlorophyll, the central pigment of photosynthesis, is highly photo-active. In order to mitigate deleterious effects of pigment accumulation, some plants have evolved a coordinated pathway to deal with chlorophyll degradation end-products, so-called phyllobilins. This pathway has been so far mostly unravelled in Arabidopsis thaliana. Here, large-scale comparative phylogenomic coupled to an innovative biochemical characterization strategy of phyllobilins allow a better understanding how such a pathway appeared in Viridiplantae. Our analysis reveals a stepwise evolution of the canonical pheophorbide a monooxygenase/phyllobilin pathway. It appears to have evolved gradually, first in chlorophyte’s chloroplasts, to ensure multicellularity by detoxifying chlorophyll catabolites, and in charophytes outside chloroplasts to allow adaptation of embryophytes to land. At least six out of the eight genes involved in the pathway were already present in the last common ancestor of green plants. This strongly suggests parallel evolution of distinct enzymes catalysing similar reactions in various lineages, particularly for the dephytylation step. Together, our study suggests that chlorophyll degradation accompanied the transition from water to land, and was therefore of great importance for plant diversification.


Sign in / Sign up

Export Citation Format

Share Document