scholarly journals Amino acid and protein modification by oxygen and nitrogen species

Amino Acids ◽  
2010 ◽  
Vol 42 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Francesco Galli
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Erna Davydova ◽  
Tadahiro Shimazu ◽  
Maren Kirstin Schuhmacher ◽  
Magnus E. Jakobsson ◽  
Hanneke L. D. M. Willemen ◽  
...  

AbstractPost-translational methylation plays a crucial role in regulating and optimizing protein function. Protein histidine methylation, occurring as the two isomers 1- and 3-methylhistidine (1MH and 3MH), was first reported five decades ago, but remains largely unexplored. Here we report that METTL9 is a broad-specificity methyltransferase that mediates the formation of the majority of 1MH present in mouse and human proteomes. METTL9-catalyzed methylation requires a His-x-His (HxH) motif, where “x” is preferably a small amino acid, allowing METTL9 to methylate a number of HxH-containing proteins, including the immunomodulatory protein S100A9 and the NDUFB3 subunit of mitochondrial respiratory Complex I. Notably, METTL9-mediated methylation enhances respiration via Complex I, and the presence of 1MH in an HxH-containing peptide reduced its zinc binding affinity. Our results establish METTL9-mediated 1MH as a pervasive protein modification, thus setting the stage for further functional studies on protein histidine methylation.


Author(s):  
Jian Zhou ◽  
Suling Bo ◽  
Hao Wang ◽  
Lei Zheng ◽  
Pengfei Liang ◽  
...  

The 2-oxoglutarate/Fe (II)-dependent (2OG) oxygenase superfamily is mainly responsible for protein modification, nucleic acid repair and/or modification, and fatty acid metabolism and plays important roles in cancer, cardiovascular disease, and other diseases. They are likely to become new targets for the treatment of cancer and other diseases, so the accurate identification of 2OG oxygenases is of great significance. Many computational methods have been proposed to predict functional proteins to compensate for the time-consuming and expensive experimental identification. However, machine learning has not been applied to the study of 2OG oxygenases. In this study, we developed OGFE_RAAC, a prediction model to identify whether a protein is a 2OG oxygenase. To improve the performance of OGFE_RAAC, 673 amino acid reduction alphabets were used to determine the optimal feature representation scheme by recoding the protein sequence. The 10-fold cross-validation test showed that the accuracy of the model in identifying 2OG oxygenases is 91.04%. Besides, the independent dataset results also proved that the model has excellent generalization and robustness. It is expected to become an effective tool for the identification of 2OG oxygenases. With further research, we have also found that the function of 2OG oxygenases may be related to their polarity and hydrophobicity, which will help the follow-up study on the catalytic mechanism of 2OG oxygenases and the way they interact with the substrate. Based on the model we built, a user-friendly web server was established and can be friendly accessed at http://bioinfor.imu.edu.cn/ogferaac.


1987 ◽  
Vol 253 (4) ◽  
pp. C575-C579 ◽  
Author(s):  
N. E. Olashaw ◽  
J. J. Van Wyk ◽  
W. J. Pledger

Somatomedin C/insulin-like growth factor I (SmC/IGF I) mediates traverse of late G0/G1 in density-arrested BALB/c-3T3 cells from a distinct growth arrest point in mid-G0/G1 (the V point) to the initiation of DNA synthesis. As a prelude to future studies aimed at defining the mechanism of action of SmC/IGF I, we investigated the level (e.g., transcriptional, translational) at which SmC/IGF I modulates V to S traverse. The post-V point progression of cells arrested at the V point by amino acid starvation and released into amino acid-replenished medium containing SmC/IGF I, insulin, or platelet-poor plasma (PPP) did not require either mRNA synthesis or an increase in the overall level of protein synthesis. Although two-dimensional gel analysis of proteins prepared from SmC/IGF I-treated cells did not reveal any preferentially synthesized proteins, several SmC/IGF I-induced protein modifications, which result in an increase in isoelectric point (pI) and occur in the absence of mRNA synthesis, were evident. These findings suggest that SmC/IGF I modulates late G0/G1 progression by a posttranscriptional process that may involve protein modification.


2011 ◽  
Vol 58 (2) ◽  
Author(s):  
Joanna Cieśla ◽  
Tomasz Frączyk ◽  
Wojciech Rode

Reversible phosphorylation is the most widespread posttranslational protein modification, playing regulatory role in almost every aspect of cell life. The majority of protein phosphorylation research has been focused on serine, threonine and tyrosine that form acid-stable phosphomonoesters. However, protein histidine, arginine and lysine residues also may undergo phosphorylation to yield acid-labile phosphoramidates, most often remaining undetected in conventional studies of protein phosphorylation. It has become increasingly evident that acid-labile protein phosphorylations play important roles in signal transduction and other regulatory processes. Beside acting as high-energy intermediates in the transfer of the phosphoryl group from donor to acceptor molecules, phosphohistidines have been found so far in histone H4, heterotrimeric G proteins, ion channel KCa3.1, annexin 1, P-selectin and myelin basic protein, as well as in recombinant thymidylate synthase expressed in bacterial cells. Phosphoarginines occur in histone H3, myelin basic protein and capsidic protein VP12 of granulosis virus, whereas phospholysine in histone H1. This overview of the current knowledge on phosphorylation of protein basic amino-acid residues takes into consideration its proved or possible roles in cell functioning. Specific requirements of studies on acid-labile protein phosphorylation are also indicated.


2021 ◽  
Vol 18 ◽  
Author(s):  
Mahdieh Darroudi ◽  
Ghodsi Mohammadi Ziarani

Introduction: Cysteine is a versatile amino acid for selective chemical modification of proteins with both chemical and biological innovations, which plays a key role in different organic reactions. Materials and Methods: Chemical modification of proteins is a rapidly expanding area in chemical biology. Selective installation of biochemical probes has led to a better understanding of natural protein modification and macromolecular function. In other cases, such as chemical alterations, the protein function has entirely changed.This review paper considers the organic reaction of cysteine, concerning reactivity of this α-amino acid containing sulfur and several methodologies are also discussed. Herein, we focused on the reaction of cysteine and its application in organic synthesis, which includes addition, condensation, substitution, condensation, oxidation and ring-opening reactions. Results and Discussion: Hence monitoring of cysteine is pivotal through the preparation of some fluorescent probe which can detect cysteine in high sensitivity. Also, a bibliometric analysis was carried out using Web of Science and Scopus databases that demonstrated significant contributions being observed in organic synthesis. Analysis of keywords revealed that research hotspots were cysteine, sensor, unclassified drug and amino acid. The topographical distribution maps showed the pattern of collaboration with the strongest links which have long work together along with high coverage of active researchers. Conclusion: Therefore, it seems that future research focuses on using cysteine amino acid in various fields as natural products and organic reactions. This focus Review highlights the enduring utility of cysteine in protein modification and sensor preparation with a special focus on recent innovations in chemistry and biology associated with such modifications.


Sign in / Sign up

Export Citation Format

Share Document