Histological evaluation of hard tissue formation after direct pulp capping with a fast-setting mineral trioxide aggregate (RetroMTA) in humans

2019 ◽  
Vol 23 (12) ◽  
pp. 4289-4299 ◽  
Author(s):  
Till Dammaschke ◽  
Alicja Nowicka ◽  
Mariusz Lipski ◽  
Domenico Ricucci
Author(s):  
Lúcio P.G. Chicarelli ◽  
Mariana B.F. Webber ◽  
João P.A. Amorim ◽  
Ana L.C.A. Rangel ◽  
Veridiana Camilotti ◽  
...  

Abstract Objectives Conduct a histological comparison of the pulp response to different materials, with a focus on the continuity and morphology of the mineralized barrier after direct pulp capping. Materials and Methods One hundred and eight maxillary first molars of 54 Wistar rats were subject to direct pulp capping and divided into three groups according to the materials used: calcium hydroxide (CH), mineral trioxide aggregate (MTA), and Biodentine. All cavities were sealed, and the animals were euthanized at 7, 14, and 21 days. Descriptive histological evaluation of the inflammation and formation of the mineralized barrier was performed. Statistical Analysis Statistical analyses were performed using the Kruskal–Wallis test, which was complemented by the Dunn test; differences with p < 0.05 were considered statistically significant. Results The results showed that MTA and Biodentine elicited less intense inflammatory reactions than CH. With respect to the formation and quality of the dentin barrier formed, differences were observed at 21 days between the analyzed groups; the best results being obtained following treatment with MTA and Biodentine. Conclusion MTA and Biodentine induced formation of a more continuous and uniform mineralized barrier with less intense pulp response than CH.


2021 ◽  
Vol 46 ◽  
Author(s):  
Ji-Hye Yoon ◽  
Sung-Hyeon Choi ◽  
Jeong-Tae Koh ◽  
Bin-Na Lee ◽  
Hoon-Sang Chang ◽  
...  

Author(s):  
G. Jeya Gopika ◽  
Sathyanarayanan Ramarao ◽  
Carounanidy Usha ◽  
Bindu Meera John ◽  
N. Vezhavendhan

<p><strong>Background: </strong>Calcium hydroxide has traditionally been used as the pulp capping material for pulpal exposures in permanent teeth. The tunnel defects in the barrier and the tendency for dissolution, however, fails to provide permanent protection to the pulp. Light curable resin based cements have been introduced to enable a better marginal seal and lesser dissolution. The purpose of this study was to compare and evaluate the response of human pulp following direct pulp capping with the new resin based Calcium silicate (TheraCal LC) and Calcium hydroxide with hydroxyapatite (Septocal LC) cements compared with calcium hydroxide (Dycal). <strong></strong></p><p><strong>Methods: </strong>72 intact human premolars scheduled for orthodontic extractions were exposed to direct pulp capping procedures using three different pulp capping agents. Teeth were randomly divided into 3 groups, Group A: Dycal, Group B: TheraCal LC, Group C: Septocal LC. The teeth were extracted at the end of 15 and 40 days’ and were evaluated histologically. They were scored for reparative dentin formation and inflammatory response. Inferential statistics was done using Chi square test<strong>. </strong><strong></strong></p><p><strong>Results: </strong>Majority of the specimens in all three groups at the end of 15 days’ showed partial to lateral deposition of hard tissue. There was continuous deposition of hard tissue and severe inflammatory response at the end of 40 days’ in Dycal. There was partial deposition of hard tissue and reduced inflammatory response at the end of 40 days’ in TheraCal LC and Septocal LC. However, the results were not statistically significant between the three groups at two different time periods. <strong></strong></p><p><strong>Conclusions: </strong>Light cured,<strong> </strong>Calcium silicate (TheraCal LC) and Calcium hydroxide with hydroxyapatite (Septocal LC) cements were as effective as calcium hydroxide (Dycal) in inducing the formation of reparative dentin and evoking inflammatory response.</p>


2021 ◽  
Vol 33 (2) ◽  

When pulpal necrosis occurs in immature teeth, one of the treatment alternatives is the creation of an artificial apical barrier through the placement of an apical plug. However, controlling the mineral trioxide aggregate (MTA) during placement has proven difficult. Several studies evaluated the use of resorbable barriers to act as an internal matrix to prevent accidental extrusion of MTA. The aim of this case report was to document the effectiveness of Surgicel as a modified internal matrix for proper placement of MTA during management of immature teeth with necrotic pulp using the apical plug technique. A 12-year-old female patient reported with the chief complaint of a badly mutilated lower right second premolar. The tooth suffered enamel hypoplasia and had a defective coronal structure. It was asymptomatic except for slight tenderness to percussion. Based on the clinical and radiographic findings, a diagnosis of pulpal necrosis with symptomatic apical periodontitis was made. The 3- and 6-month followup showed radiographic evidence of continued root and hard tissue formation. Based on these findings, we infer that Surgicel can be used as a modified internal matrix to prevent extrusion of the MTA into the periapical area and allow for proper MTA placement. Keywords: Apexification; Apical plug; Mineral trioxide aggregate; Calcium hydroxide; Surgicel; Modified internal matrix


2019 ◽  
Vol 73 (4) ◽  
pp. 239-248
Author(s):  
Violeta Petrovic ◽  
Jovana Stasic ◽  
Vojislav Komlenic ◽  
Tatjana Savic-Stankovic ◽  
Marina Latkovic ◽  
...  

The objective of this study was to measure temperature changes in the pulp chamber induced by polymerization of resin-based dental restoratives following a simulated procedure of direct pulp capping. Class I cavities with a microperforation at the pulp horn were prepared in extracted human molar teeth. The complete procedure of direct pulp capping and cavity restoration was performed with the root part of extracted teeth fixed in a water bath at 37 ?C. Mineral trioxide aggregate, bioactive dentin substitute or calcium-hydroxide paste were used as pulp capping materials. Cavities were restored with a light-cured or chemically-cured resin-modified glass ionomer, universal adhesive and a bulk-fill composite, cured with a high-intensity LED unit. Pulp capping materials caused a slight temperature decrease. Lower temperature increase was recorded during light-curing of the glass ionomer liner after direct capping with mineral trioxide aggregate and calcium-hydroxide than that recorded for the bioactive dentin substitute. Adhesive light-curing increased temperature in all groups with higher mean temperatures in groups with chemically-cured as compared to those for the light-cured glass ionomer liner. Direct pulp capping with mineral trioxide aggregate or calcium-hydroxide followed by the light-cured resin-modified glass ionomer liner and a bonded bulk-fill composite restoration induced temperature changes below the potentially adverse threshold of 42.5?C.


2019 ◽  
Vol 52 (11) ◽  
pp. 1605-1616 ◽  
Author(s):  
K. Yaemkleebbua ◽  
T. Osathanon ◽  
N. Nowwarote ◽  
C. N. Limjeerajarus ◽  
W. Sukarawan

Sign in / Sign up

Export Citation Format

Share Document