Investigation into a stress-inducible promoter region from Marinococcus halophilus using green fluorescent protein

Extremophiles ◽  
2002 ◽  
Vol 6 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Thorsten Bestvater ◽  
Erwin Galinski
2006 ◽  
Vol 69 (2) ◽  
pp. 276-281 ◽  
Author(s):  
T. P. OSCAR ◽  
K. DULAL ◽  
D. BOUCAUD

The green fluorescent protein (GFP) of the jellyfish Aequorea victoria has been widely used as a biomarker and has potential for use in developing predictive models for growth of pathogens on naturally contaminated food. However, constitutive production of GFP can reduce growth of transformed strains. Consequently, a high-copy plasmid with gfp under the control of a tetracycline-inducible promoter (pTGP) was constructed. The plasmid was first introduced into a tetracycline-resistant strain of Escherichia coli K-12 to propagate it for subsequent transformation of tetracycline-resistant strains of Salmonella. In contrast to transformed E. coli K-12, which only fluoresced in response to tetracycline, transformed Salmonella fluoresced maximally without tetracycline induction of gfp. Although pTGP did not function as intended in Salmonella, growth of parent and GFP E. coli K-12 was compared to test the hypothesis that induction of GFP production reduced growth. Although GFP production was not induced during growth on sterile chicken in the absence of tetracycline, maximum specific growth rate (μmax) of GFP E. coli K-12 was reduced 40 to 50% (P < 0.05) at 10, 25, and 40°C compared with the parent strain. When growth of parent and GFP strains of E. coli K-12 was compared in sterile broth at 40°C, μmax and maximum population density of the GFP strain were reduced (P < 0.05) to the same extent (50 to 60%) in the absence and presence of tetracycline. These results indicated that transformation reduced growth of E. coli K-12 independent of gfp induction. Thus, use of a low-copy plasmid or insertion of gfp into the chromosome may be required to construct valid strains for development of predictive models for growth of pathogens on naturally contaminated food.


2000 ◽  
Vol 13 (9) ◽  
pp. 929-941 ◽  
Author(s):  
Sally-Anne Stephenson ◽  
Jodie Hatfield ◽  
Anca G. Rusu ◽  
Donald J. Maclean ◽  
John M. Manners

A gene of Colletotrichum gloeosporioides that is induced by nitrogen starvation in axenic culture and is expressed at the early stages of infection of the host Stylosanthes guianensis has been identified and its role in pathogenicity tested. The sequence of this gene, named CgDN3, indicated that it encodes a protein of 74 amino acids that contains a predicted 18 amino acid signal sequence for secretion of a basic 54 amino acid mature protein with weak homology to an internal region of plant wall-associated receptor kinases. Mutants of C. gloeosporioides were produced by homologous recombination in which part of the coding sequence and promoter region of the CgDN3 gene was replaced with a hygromycin-resistance gene cassette. Mutations in the CgDN3 gene were confirmed in two independent transformants and Northern (RNA) analysis demonstrated the disrupted CgDN3 gene was not expressed. The mutants had faster mycelial growth rates in vitro but produced spores that germinated to form appressoria normally on the leaf surface. However, the CgDN3 mutants were unable to infect and reproduce on intact host leaves. Microscopic analysis revealed small clusters of necrotic host cells at inoculation sites on leaves, suggesting that these mutants elicited a localized, host hypersensitive-like response. The mutants were able to grow necrotrophically and reproduce on leaves when conidia were inoculated directly onto wound sites. The putative promoter region of the CgDN3 gene was fused to a gene encoding a modified jellyfish green fluorescent protein and introduced into the fungus. Following inoculation, strong expression of green fluorescent protein was observed in primary infection vesicles in infected epidermal cells with weaker expression evident in hyphae growing within infected leaf tissue. These findings indicate that CgDN3 encodes a novel pathogenicity determinant associated with the biotrophic phase of primary infection and required to avert a hypersensitive-like response by a compatible host.


2001 ◽  
Vol 14 (2) ◽  
pp. 156-163 ◽  
Author(s):  
Eric A. Rohel ◽  
Andrew C. Payne ◽  
Bart A. Fraaije ◽  
Derek W. Hollomon

A Mycosphaerella graminicola strain transformed with the green fluorescent protein (GFP) downstream of either a carbon source-repressed promoter or a constitutive promoter was used to investigate in situ carbohydrate uptake during penetration of the fungus in wheat leaves. The promoter region of the acu-3 gene from Neurospora crassa encoding isocitrate lyase was used as a carbon source-repressed promoter. The promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase was used as a constitutive promoter. Fluorometric measurement of GFP gene expression in liquid cultures of acu-3-regulated transformants indicated that the N. crassa acu-3 promoter functions in M. graminicola as it does in N. crassa, i.e., acetate induced and carbon source repressed. Glucose, fructose, and saccharose triggered the repression, whereas mannitol, xylose, and cell wall polysaccharides did not. Monitoring the GFP level during fungal infection of wheat leaves revealed that acu-3 promoter repression occurred after penetration until sporulation, when newly differentiated pycnidiospores fluoresced. The use of GFP transformants also allowed clear visualization of M. graminicola pathogenesis. No appressoria were formed, but penetration at cell junctions was observed. These results give new insight into the biotrophic status of M. graminicola.


Sign in / Sign up

Export Citation Format

Share Document