Tin chloride perovskite-sensitized core/shell photoanode solar cell with spiro-MeOTAD hole transport material for enhanced solar light harvesting

2016 ◽  
Vol 20 (10) ◽  
pp. 2633-2642 ◽  
Author(s):  
P. Ananthajothi ◽  
P. Venkatachalam
2021 ◽  
Vol 764 ◽  
pp. 138283
Author(s):  
Libo Yu ◽  
Wang Hao ◽  
Zhen Li ◽  
Xuefeng Ren ◽  
Huiwen Yang ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8879-8885
Author(s):  
Jui-Heng Chen ◽  
Kun-Mu Lee ◽  
Chang-Chieh Ting ◽  
Ching-Yuan Liu

Carbazole or phenothiazine core-based hole-transport materials are facilely accessed by an optimized synthesis-shortcut. Perovskite solar cell devices with 6–13 demonstrate PCEs of up to 17.57%.


2020 ◽  
Vol 29 ◽  
pp. 8-14
Author(s):  
Manal Midhat Abdullah ◽  
Omar Adnan Ibrahim

Core-shell nanocrystals are utilized to improve vitality conversion efficiency of Si based solar cells. In the present work, a study of synthesis and characterization of photo luminescent, down-shifting, core-shell CdSe/CdS quantum dots is introduced. The QD,s absorb in the UV range (350nm) of the solar spectrum and emit photons with wavelengths centered at (574 nm). Calculated energy gap is (2.16 eV), which is well suited for Silicon absorption and electron-hole pair generation. The grain size is ranged between (1.814 and 3.456 nm). Results show that the cell efficiency is improved from (8.81%) (For a reference silicon solar cell) to (10.07%) (For a CdSe/CdS QD deposited directly on the surface of the solar cell). This improvement is referred to the spreading of the absorbed solar radiation over the spectral response of the Si solar cell.


2011 ◽  
Vol 10 ◽  
pp. 33-37 ◽  
Author(s):  
Ludovic Dupré ◽  
Denis Buttard ◽  
Pascal Gentile ◽  
Nicolas Pauc ◽  
Amit Solanki

Sign in / Sign up

Export Citation Format

Share Document