Chloride mass balance for estimation of groundwater recharge in a semi-arid catchment of northern Ethiopia

2018 ◽  
Vol 27 (1) ◽  
pp. 363-378 ◽  
Author(s):  
Teklebirhan Arefaine Gebru ◽  
Gebreyesus Brhane Tesfahunegn
2018 ◽  
Author(s):  
Ferdinando Manna ◽  
Steven Murray ◽  
Daron Abbey ◽  
Paul Martin ◽  
John Cherry ◽  
...  

Abstract. With the aim to understand the spatial and temporal variability of groundwater recharge, a high-resolution, spatially-distributed numerical model (MIKE SHE) representing surface water and groundwater was used to simulate responses to precipitation in a 2.16 km2 upland catchment on fractured sandstone near Los Angeles, California. Exceptionally high temporal and spatial resolution was used for this catchment modeling: an hourly time-step, a 20 × 20 meter grid in the horizontal plane and 240 numerical layers distributed vertically within the thick vadose zone and in the upper part of the groundwater zone. The finest-practical spatial and temporal resolution were selected to accommodate the large degree of surface and subsurface variability of catchment features. Physical property values for the different lithologies were assigned based on previous on-site investigations whereas the parameters controlling streamflow and evapotranspiration were derived from literature information. The calibration of streamflow at the outfall and of transient and average hydraulic head provided confidence in the reasonableness of these input values and in the ability of the model to reproduce observed processes. Confidence in the calibrated model was enhanced by validation through, (i) comparison of simulated average recharge to estimates based on the applications of the chloride mass-balance method from data from the groundwater and vadose zones within and beyond the catchment (Manna et al., 2016; Manna et al., 2017) and, (ii) comparison of the water isotope signature (18O and 2H) in shallow groundwater to the variability of isotope signatures for precipitation events over an annual cycle. The average simulated recharge across the catchment for the period 1995–2014 is 16 mm y−1 (4 % of the average annual precipitation), which is consistent with previous estimates obtained by using the chloride mass balance method (4.2 % of the average precipitation). However, one of the most unexpected results was that local recharge was simulated to vary from 0 to > 1000 mm y−1 due to episodic precipitation and overland runoff effects. This recharge occurs episodically with the major flux events at the bottom of the evapotranspiration zone, as simulated by MIKE SHE and confirmed by the isotope signatures, occurring only at the end of the rainy season. This is the first study that combines MIKE SHE simulations with the analysis of water isotopes in groundwater and rainfall to determine the timing of recharge processes in semi-arid regions. The study advances the understanding of recharge and unsaturated flow processes in semi-arid regions and enhances our ability to predict the effects of surface and subsurface features on recharge rates. This is crucial in highly heterogeneous contaminated sites because different contaminant source areas have widely varying recharge and, hence, groundwater fluxes impacting their mobility.


2010 ◽  
Vol 14 (7) ◽  
pp. 1233-1245 ◽  
Author(s):  
H. Guan ◽  
A. J. Love ◽  
C. T. Simmons ◽  
J. Hutson ◽  
Z. Ding

Abstract. Of the various approaches for estimating groundwater recharge, the chloride mass balance (CMB) method is one of the most frequently used, especially for arid and semiarid regions. Widespread native vegetation clearance, common in many areas globally, has changed the land surface boundary condition, posing the question as to whether the current system has reached new chloride equilibrium, required for a CMB application. Although a one-dimensional CMB can be applied at a point where the water and chloride fluxes are locally in steady state, the CMB method is usually applied at a catchment scale owing to significant lateral flows in mountains. The applicability of the CMB method to several conceptual catchment types of various chloride equilibrium conditions is examined. The conceptualisation, combined with some local climate conditions, is shown to be useful in assessing whether or not a catchment has reached new chloride equilibrium. The six conceptual catchment types are tested with eleven selected catchments in the Mount Lofty Ranges (MLR), a coastal hilly area in South Australia having experienced widespread historical forest clearance. The results show that six of the eleven catchments match a type VI chloride balance condition (chloride non-equilibrium with a gaining stream), with the ratios of stream chloride output (O) over atmospheric chloride input (I), or catchment chloride O/I ratios, ranging from 2 to 4. Two catchments match a type V chloride balance condition (chloride non-equilibrium with a losing stream), with catchment chloride O/I ratios about 0.5. For these type V and type VI catchments, the CMB method is not applicable. The results also suggest that neither a chloride O/I ratio less than one nor a low seasonal fluctuation of streamflow chloride concentration (a factor below 4) guarantees a chloride equilibrium condition in the study area. A large chloride O/I value (above one) and a large fluctuation of streamflow chloride concentration (a factor of 10 and above) generally indicates either a chloride disequilibrium, or cross-catchment water transfer, or both, for which the CMB method is not applicable. Based on regression between chloride O/I values and annual precipitation for type VI catchments, a catchment with annual precipitation of 900 mm in MLR has most likely reached new chloride equilibrium, and the CMB method can be applied if no cross-catchment water transfer occurs. CMB is applied to one catchment at chloride equilibrium, suggesting a net groundwater recharge of 27 mm/yr, about 3% of annual precipitation.


2018 ◽  
Vol 561 ◽  
pp. 1063-1080 ◽  
Author(s):  
Russell S. Crosbie ◽  
Luk J.M. Peeters ◽  
Natasha Herron ◽  
Tim R. McVicar ◽  
Alexander Herr

Sign in / Sign up

Export Citation Format

Share Document