Reconstructions upon thermal desorption in ultra high vacuum of InSe covered Si(111) surfaces

1998 ◽  
Vol 5 (4-6) ◽  
pp. 919-926 ◽  
Author(s):  
F. Proix ◽  
V. Panella ◽  
S. El Monkad ◽  
A. Glebov ◽  
J.P. Lacharme ◽  
...  
1999 ◽  
Vol 594 ◽  
Author(s):  
C. S. Bhatia ◽  
C.-Y. Chen ◽  
W. Fong ◽  
D. B. Bogy

AbstractTribochemical studies of the effect of lubricant bonding on the tribology of the head/disk interface (HDI) were conducted using hydrogenated (CHx) carbon disk samples coated with perfluoropolyether ZDOL lubricant. The studies involved drag tests with uncoated and carboncoated Al2O3-TiC sliders and also thermal desorption experiments in an ultra-high vacuum (UHV) tribochamber. We observed that a larger mobile lubricant portion significantly enhances the wear durability of the (head/disk interface) HDI by providing a reservoir to constantly replenish the lubricant displaced in the wear track during drag tests. In the thermal desorption tests we observed two distinct temperatures of desorption. The mobile ZDOL layer is desorbed at the lower thermal desorption temperature and the residual bonded ZDOL layer is desorbed at the higher thermal desorption temperature. We also observed that the hydrogen evolution from CHx overcoats initiates lubricant catalytic decomposition with uncoated Al2O3/TiC sliders, forming CF3 (69) and C2F5 (119). The generation of Hydroflouric acid (HF) during thermal desorption experiments provides the formation mechanism of Lewis acid, which is the necessary component for catalytic reaction causing Z-DOL lube degradation.


2016 ◽  
Vol 879 ◽  
pp. 1220-1225
Author(s):  
Toshiaki Manaka ◽  
Masaya Aoki ◽  
Goroh Itoh

Hydrogen in aluminum has been known to be the cause of blister and pore. Some aluminum alloy is susceptible to stress corrosion cracking, which is based on intergranular cracking arisen from hydrogen embrittlement. The behavior of hydrogen in aluminum has not been fully understood yet. Hydrogen gas plasma enables to introduce high hydrogen concentrations into specimen without Al (OH)3 layer on the surface of specimen. In this paper, we have investigated the behavior of hydrogen in a plasma charged aluminum by means of thermal desorption spectroscopy, a method to evaluate the amount and trap states of hydrogen. Cold-rolled pure aluminum were annealed, electro-polished and charged with hydrogen gas plasma. Immediately after hydrogen gas plasma charging, TDS tests were performed under ultra-high vacuum. The hydrogen desorption spectrums obtained by TDS tests had three peaks corresponding to the co-diffusion of hydrogen-vacancy pair, dislocation and pore. Compared to a sample without charging, in a plasma charged sample, the amount of hydrogen trapped in vacancies especially increased.


2018 ◽  
Vol 612 ◽  
pp. A88 ◽  
Author(s):  
N. F. W. Ligterink ◽  
C. Walsh ◽  
R. G. Bhuin ◽  
S. Vissapragada ◽  
J. Terwisscha van Scheltinga ◽  
...  

Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls the transition from solid state to gas-phase methanol in cold environments is not understood. Aims. The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb at low temperatures. Methods. Mixed CH3OH:CO/CH4 ices were heated under ultra-high vacuum conditions and ice contents are traced using RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya, a protoplanetary disk in which cold gas-phase methanol has recently been detected. Results. Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting in an upper limit of ≤ 7.3 × 10−7 CH3OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based on the upper limits shows that co-desorption rates as low as 10−6 CH3OH molecules per CO molecule are high enough to release substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary disk. The impact of thermal co-desorption of CH3OH with CO as a grain-gas bridge mechanism is compared with that of UV induced photodesorption and chemisorption.


1991 ◽  
Vol 237 ◽  
Author(s):  
Yung-Jen Lin ◽  
Tri-Rung Yew

ABSTRACTThis paper presents the results of silicon epitaxial growth on silicon windows surrounded with oxide walls by electron-beam evaporation in an ultra-high vacuum system with a load-lock chamber. The wafer surface was in-situ cleaned in the growth chamber to remove native oxide by thermal desorption at about 840 °C and a base pressure of better than 2 × 10-9 Torr. The growth temperature was 200°C or higher. The pre-epitaxial silicon surface structure was inspected by reflection high energy electron diffraction (RHEED). The influence of the thermal desorption on the quality of the epi/substrate interface and epitaxial layers was studied. In addtion, the deposition parameters which control the epitaxial quality were investigated. The epitaxial films were characterized by cross-sectional trasmission electron microscopy (XTEM) and secondary ion mass spectroscopy (SIMS).


1999 ◽  
Vol 593 ◽  
Author(s):  
C.S. Bhatia ◽  
C.-Y. Chen ◽  
W. Fong ◽  
D.B. Bogy

ABSTRACTTribochemical studies of the effect of lubricant bonding on the tribology of the head/disk interface (HDI) were conducted using hydrogenated (CHx) carbon disk samples coated with perfluoropolyether ZDOL lubricant. The studies involved drag tests with uncoated and carbon-coated A1203-TiC sliders and also thermal desorption experiments in an ultra-high vacuum (UHV) tribochamber. We observed that a larger mobile lubricant portion significantly enhances the wear durability of the (head/disk interface) HDI by providing a reservoir to constantly replenish the lubricant displaced in the wear track during drag tests. In the thermal desorption tests we observed two distinct temperatures of desorption. The mobile ZDOL layer is desorbed at the lower thermal desorption temperature and the residual bonded ZDOL layer is desorbed at the higher thermal desorption temperature. We also observed that the hydrogen evolution from CHx overcoats initiates lubricant catalytic decomposition with uncoated A1203/TiC sliders, forming CF3 (69) and C2F5(119). The generation of Hydroflouric acid (HF) during thermal desorption experiments provides the formation mechanism of Lewis acid, which is the necessary component for catalytic reaction causing Z-DOL lube degradation


Author(s):  
George H. N. Riddle ◽  
Benjamin M. Siegel

A routine procedure for growing very thin graphite substrate films has been developed. The films are grown pyrolytically in an ultra-high vacuum chamber by exposing (111) epitaxial nickel films to carbon monoxide gas. The nickel serves as a catalyst for the disproportionation of CO through the reaction 2C0 → C + CO2. The nickel catalyst is prepared by evaporation onto artificial mica at 400°C and annealing for 1/2 hour at 600°C in vacuum. Exposure of the annealed nickel to 1 torr CO for 3 hours at 500°C results in the growth of very thin continuous graphite films. The graphite is stripped from its nickel substrate in acid and mounted on holey formvar support films for use as specimen substrates.The graphite films, self-supporting over formvar holes up to five microns in diameter, have been studied by bright and dark field electron microscopy, by electron diffraction, and have been shadowed to reveal their topography and thickness. The films consist of individual crystallites typically a micron across with their basal planes parallel to the surface but oriented in different, apparently random directions about the normal to the basal plane.


Author(s):  
R. H. Geiss ◽  
R. L. Ladd ◽  
K. R. Lawless

Detailed electron microscope and diffraction studies of the sub-oxides of vanadium have been reported by Cambini and co-workers, and an oxidation study, possibly complicated by carbon and/or nitrogen, has been published by Edington and Smallman. The results reported by these different authors are not in good agreement. For this study, high purity polycrystalline vanadium samples were electrochemically thinned in a dual jet polisher using a solution of 20% H2SO4, 80% CH3OH, and then oxidized in an ion-pumped ultra-high vacuum reactor system using spectroscopically pure oxygen. Samples were oxidized at 350°C and 100μ oxygen pressure for periods of 30,60,90 and 160 minutes. Since our primary interest is in the mechanism of the low pressure oxidation process, the oxidized samples were cooled rapidly and not homogenized. The specimens were then examined in the HVEM at voltages up to 500 kV, the higher voltages being necessary to examine thick sections for which the oxidation behavior was more characteristic of the bulk.


Author(s):  
A. V. Crewe

The high resolution STEM is now a fact of life. I think that we have, in the last few years, demonstrated that this instrument is capable of the same resolving power as a CEM but is sufficiently different in its imaging characteristics to offer some real advantages.It seems possible to prove in a quite general way that only a field emission source can give adequate intensity for the highest resolution^ and at the moment this means operating at ultra high vacuum levels. Our experience, however, is that neither the source nor the vacuum are difficult to manage and indeed are simpler than many other systems and substantially trouble-free.


Sign in / Sign up

Export Citation Format

Share Document