Modification of rock stress factor in the stability graph method: a case study at the Alhada Lead-Zinc Mine in Inner Mongolia, China

2020 ◽  
Vol 79 (6) ◽  
pp. 3257-3269
Author(s):  
Hanwen Jia ◽  
Kai Guan ◽  
Wancheng Zhu ◽  
Honglei Liu ◽  
Xige Liu
2011 ◽  
Vol 48 (1) ◽  
pp. 141-145 ◽  
Author(s):  
Hani S. Mitri ◽  
Rory Hughes ◽  
Yaohua Zhang

2011 ◽  
Vol 120 ◽  
pp. 263-268
Author(s):  
Shi Jiao Yang ◽  
Hui Luo ◽  
Jian Yong Dai ◽  
Chang Zhen Wu

Panel mining requires constructing lots of artificial pillars in underground metal mines. Along with the development of the mining process the stress-strain state of pillars changes constantly. Finite element numerical simulation with Midas/GTS software is used to analyze the stability of the pillar during the entire process of panel mining and consider randomness and fuzziness for material parameters of concrete and ore rock to get stress distribution in the pillar. In this paper, the performance function and equation of dynamic fuzzy reliability for a pillar in the whole mining process are established and are solved by a program developed with the MATLAB software. Applying the proposed theory and procedures to dynamic fuzzy reliability analysis and calculation of the pillar was set in panel mining under complex conditions in Zhao Tong Lead-Zinc mine. The results indicate that dynamic fuzzy reliability can better reflect the pillar stability during the entire process of panel mining and the proposed theory and procedures are effective in evaluating the dynamic fuzzy reliability.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Zhuen Ruan ◽  
Yong Wang ◽  
Aixiang Wu ◽  
Shenghua Yin ◽  
Fei Jin

Deep cone thickener (DCT) is key equipment in cemented paste backfill (CPB) technology. However, rake blockage occurs frequently in DCT during the dewatering process of the unclassified tailings being thickened from dilute slurry to thickened tailings or paste. Rake blockage has disastrous effects on the CPB operation. In order to investigate the influencing factors of rake blockage in DCT, a mathematical model of rake power in DCT was developed. In addition, stacking mud bed (made of thickened tailings) from the DCT in Huize lead-zinc mine (HLZM) in different rake blockage accidents was sampled and tested to investigate the effect of tailings characters on rake blockage. Results indicated that the concentration of the mud bed and the friction between the mud bed and the cone wall contributed to the rake blockage. The concentration and friction were influenced by the high content of coarse particles in the mud bed. Moreover, activating devices for bed mud, as the corrective and preventive action, were developed to prevent the rake blockage, which was valid in HLZM.


2017 ◽  
Vol 62 (3) ◽  
pp. 653-669 ◽  
Author(s):  
Mohammadali Sepehri ◽  
Derek Apel ◽  
Wei Liu

AbstractPredicting the stability of open stopes can be a challenging task for underground mine engineers. For decades, the stability graph method has been used as the first step of open stope design around the world. However, there are some shortcomings with this method. For instance, the stability graph method does not account for the relaxation zones around the stopes. Another limitation of the stability graph is that this method cannot to be used to evaluate the stability of the stopes with high walls made of backfill materials. However, there are several analytical and numerical methods that can be used to overcome these limitations. In this study, both empirical and numerical methods have been used to assess the stability of an open stope located between mine levels N9225 and N9250 at Diavik diamond underground mine. It was shown that the numerical methods can be used as complementary methods along with other analytical and empirical methods to assess the stability of open stopes. A three dimensional elastoplastic finite element model was constructed using Abaqus software. In this paper a sensitivity analysis was performed to investigate the impact of the stress ratio “k” on the extent of the yielding and relaxation zones around the hangingwall and footwall of the understudy stope.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 717
Author(s):  
Yifan Zhao ◽  
Xingdong Zhao ◽  
Jiajia Dai ◽  
Wenlong Yu

This paper describes a case study of surface subsidence in the Hongling Lead-Zinc Mine. Hongling Lead-Zinc Mine is located in Inner Mongolia, China, about 240 km away from the border between China and Mongolia. There is a batch of outcrops of the near-surface thick steep-dip metamorphic orebody. The large-scale surface subsidence induced by underground excavation has brought some impact on the safety of herdsmen and their daily husbandry activities nearby. The requirements of reclamation for subsidence areas in the relevant laws and regulations, raise enormous pressure and risk on safe and economic operation. In this paper, a 3D numerical model of this mine was built by 3DMine and FLAC3D to analyse the excavation procedure and mechanism. The results of the simulation were in good agreement with the field subsidence data collected by satellites and unmanned aerial vehicles from 2009 to 2019. The analysis showed that the current mining method—an integrated underground method of stoping and caving—accelerated the surface subsidence, and some measures of monitoring, controlling and management were expected to take in order to improve economic and ecological benefits.


2020 ◽  
Vol 38 (4) ◽  
pp. 4269-4287 ◽  
Author(s):  
Feifei Wang ◽  
Qingyang Ren ◽  
Bin Chen ◽  
Ping Zou ◽  
Zijian Peng ◽  
...  

2001 ◽  
Vol 10 (01) ◽  
pp. 3-37 ◽  
Author(s):  
F. T. SUORINENI ◽  
D. D. TANNANT ◽  
P. K. KAISER ◽  
M. B. DUSSEAULT

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Shaowei Ma ◽  
Zhouquan Luo ◽  
Jianhua Hu ◽  
Qifan Ren ◽  
Yaguang Qin ◽  
...  

For the stability of the intervening pillar of the sublevel drilling open-stope subsequent filling mining method, the multifactor stability mechanical model of the intervening pillar under two different constraint conditions (Model 1 and Model 2) was established based on the elastic thin plate theory. Then, the cusp catastrophe equation and the necessary and sufficient conditions for the instability of the intervening pillar under two different constraint conditions were obtained by using the cusp catastrophe theory. Furthermore, the minimum thickness formula for the intervening pillar without instability under two different constraint conditions was derived, and the relationships between the minimum thickness of the intervening pillar and the factors, including the depth of the stope, the inclination of the orebody, the thickness of the orebody, the height of the stage, the length of the stope, and the mechanical properties of the orebody, were analyzed. Finally, the formula was used in the design of an intervening pillar between stopes 4-1 and 4-2 in Panlong Lead-Zinc Mine. The designed thickness of the pillar was 6.01 m by calculation, its actual thickness was 6.35–7.25 m in the mining process, and its average thickness was 6.5 m. Compared with the previously designed thickness of 7-8 m at the same stage, the pillar was 0.5–1.5 m smaller, which more effectively improved the recovery rate of the ore under the premise of ensuring the stability of the intervening pillar. This example of industrial application proves that it is feasible to use the cusp catastrophe theory to analyze the stability and parameter design of the intervening pillar under different constraints.


2014 ◽  
Vol 67 (4) ◽  
pp. 413-419 ◽  
Author(s):  
Michel Melo ◽  
Cláudio Lúcio Lopes Pinto ◽  
José lldefonso Gusmão Dutra

Empirical methods should be restricted to situations similar to the circumstances used for their development. The Stability Graph Method, first proposed by Mathews et al. (1981) and later modified by Potvin (1988), was based on data from Canadian and Australian mines. Therefore, there is no evidence of their use in the Brazilian geomechanical context. The Stability Graph Method is intended to design a stable open stope in mines using the Sublevel Stoping Mining method. The present study investigates the applicability of the methods in Sublevel Stoping Brazilian mines. This is a contribution to the validation of the use of the methods in the Brazilian geomechanical context.


Sign in / Sign up

Export Citation Format

Share Document